语义搜索与聚类任务的句子嵌入模型
此模型将句子和段落转换为768维的稠密向量,适用于语义搜索和聚类任务。然而,由于其性能已不再是最优,建议选择更优质的句子嵌入模型。如需使用,可通过安装sentence-transformers库轻松实现,或使用HuggingFace Transformers进行更高级的处理,如加入注意力掩码的平均池化。尽管模型效能下降,其架构仍有参考价值。
stsb-distilbert-base 是一个由 sentence-transformers 团队开发的模型,主要用于将句子和段落映射到一个768维的密集向量空间。这项技术可以用于如聚类或语义搜索等任务。这个模型构建在 DistilBERT 的基础上,利用了其简化和高效的架构。
要使用这个模型,用户需要安装 sentence-transformers
库。有两种主要的使用方式:一种是通过 sentence-transformers 库,另一种是通过 HuggingFace Transformers 库。
首先,使用命令安装库:
pip install -U sentence-transformers
然后,您可以像下面这样使用该模型:
from sentence_transformers import SentenceTransformer sentences = ["这是一个例句", "每个句子都会被转换"] model = SentenceTransformer('sentence-transformers/stsb-distilbert-base') embeddings = model.encode(sentences) print(embeddings)
即使不使用 sentence-transformers 库,用户也可以通过 HuggingFace Transformers 库来使用模型。这需要对输入进行预处理,然后应用正确的池化操作以获得句子嵌入。
from transformers import AutoTokenizer, AutoModel import torch # 均值池化 - 结合注意力掩码以正确平均 def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['这是一个例句', '每个句子都会被转换'] # 从 HuggingFace Hub 加载模型 tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/stsb-distilbert-base') model = AutoModel.from_pretrained('sentence-transformers/stsb-distilbert-base') # 对句子进行标记化 encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # 计算标记嵌入 with torch.no_grad(): model_output = model(**encoded_input) # 进行池化操作,这里采用均值池化 sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("句子嵌入:") print(sentence_embeddings)
对于该模型 的自动评估,用户可以参考 Sentence Embeddings Benchmark。有关具体的评估结果,可以访问:Sentence Embeddings Benchmark
该模型由以下架构组成:
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
这个模型是由 sentence-transformers 团队训练的。如果你觉得这个模型有所帮助,可以引用他们的研究发表:Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人 等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号