如果您发现我们的代码或论文有用,请按以下方式引用:
@article{bharadwaj2023flare,
author = {Bharadwaj, Shrisha and Zheng, Yufeng and Hilliges, Otmar and Black, Michael J. and Abrevaya, Victoria Fernandez},
title = {FLARE: Fast Learning of Animatable and Relightable Mesh Avatars},
year = {2023},
issue_date = {December 2023},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {42},
number = {6},
issn = {0730-0301},
url = {https://doi.org/10.1145/3618401},
doi = {10.1145/3618401},
journal = {ACM Trans. Graph.},
month = {dec},
articleno = {204},
numpages = {15},
keywords = {neural rendering, neural head avatars, relighting, 3D reconstruction}
}
克隆仓库:
git clone https://github.com/sbharadwajj/flare
cd flare
generic_model.pkl复制到./flame/FLAME2020conda create -n flare python=3.9
conda activate flare
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c bottler nvidiacub
conda install pytorch3d -c pytorch3d
nvdiffrast和tinycudann:
注意在构建tiny-cuda-nn之前必须设置您特定GPU的NVIDIA GPU架构。
这段代码在单个NVIDIA 80GB A100 GPU和NVIDIA RTX A5000 24 GB上进行了测试,两者都具有NVIDIA GPU架构sm_80。我们使用了cuda 11.7和cudnn 8.4.1。pip install ninja imageio PyOpenGL glfw xatlas gdown
pip install git+https://github.com/NVlabs/nvdiffrast/
export TCNN_CUDA_ARCHITECTURES="70;75;80"
export NVCC_PREPEND_FLAGS='-ccbin /usr/bin/gcc-9'
pip install --global-option="--no-networks" git+https://github.com/NVlabs/tiny-cuda-nn#subdirectory=bindings/torch
imageio_download_bin freeimage
pip install gpytoolbox opencv-python trimesh matplotlib chumpy lpips tqdm
我们遵循IMavatar使用的相同数据格式和预处理。我们捕捉了额外的对象,其中一些预处理过的对象和模型可以在这里找到。
其他对象可以在IMavatar和PointAvatar的代码库中找到。
请参考这一部分来预处理您自己的数据。 请注意,我们遵循OpenGL格式的相机,并在训练过程中直接进行转换。
配置文件:
input_dir: 设置数据集文件夹的路径working_dir: 代码库的路径output_dir: 保存输出的路径python train.py --config configs/001.txt
测试代码保存内在材质的定性结果,再次进行定量评估(训练脚本是自包含的,最终的指标评估在训练后保存),并根据eval_dir生成重新照明和动画的结果。可以在assets/env_maps文件夹中添加其他环境贴图。
python test.py --config configs/001.txt
请参考配置文件来调整各个参数:
downsample: 在训练前对网格进行降采样。在最终论文中,我们不进行降采样(这是默认参数),但为了进一步改善结果,可以使用此参数。upsample_iterations: 对于最终论文,我们在第500次迭 代时进行一次上采样。但如果网格最初被降采样,可以在第1000次迭代时添加额外的上采样步骤。上采样网格可以改善小细节,但如果过度使用也容易产生高频伪影。sample_idx_ratio: 默认值为1,即采样所有图像。但为了更快地进行调试,可以将其设置为任意第n个值(例如6),以均匀采样每第n(第6)个图像。我们使用单个NVIDIA 80GB A100 GPU训练我们的模型。通过减少批量大小,可以在内存较小的GPU(例如24 GB)上进行训练。
此代码和模型仅供非商业科研目的使用,如LICENSE文件中所定义。通过下载和使用代码和模型,您同意LICENSE中的条款。
对于基于外部来源的函数或脚本,我们在每个文件中单独致谢其来源。 但我们特别受益于Nvdiffrec。如果您觉得我们的工作有帮助,请考虑引用他们的工作bibtex。
其他有帮助的代码库:
查看这个代码库以了解此处遵循的README.md样式。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍, 让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号