wtfpython

wtfpython

深入剖析Python中令人惊讶的代码行为

wtfpython项目通过一系列出人意料的代码示例,揭示了Python语言内部的独特机制。该项目解析了反直觉的代码行为和鲜为人知的语言特性,帮助程序员加深对Python的理解。无论编程经验如何,读者都能从中获得有价值的洞见,提升Python编程技能。

Python代码片段语法优化字符串内化Github开源项目
<p align="center"><img src="/images/logo.png#gh-light-mode-only" alt=""><img src="/images/logo-dark.png#gh-dark-mode-only" alt=""></p> <h1 align="center">What the f*ck Python! 😱</h1> <p align="center">Exploring and understanding Python through surprising snippets.</p>

Translations: Chinese 中文 | Vietnamese Tiếng Việt | Spanish Español | Korean 한국어 | Russian Русский | German Deutsch | Add translation

Other modes: Interactive Website | Interactive Notebook | CLI

Python, being a beautifully designed high-level and interpreter-based programming language, provides us with many features for the programmer's comfort. But sometimes, the outcomes of a Python snippet may not seem obvious at first sight.

Here's a fun project attempting to explain what exactly is happening under the hood for some counter-intuitive snippets and lesser-known features in Python.

While some of the examples you see below may not be WTFs in the truest sense, but they'll reveal some of the interesting parts of Python that you might be unaware of. I find it a nice way to learn the internals of a programming language, and I believe that you'll find it interesting too!

If you're an experienced Python programmer, you can take it as a challenge to get most of them right in the first attempt. You may have already experienced some of them before, and I might be able to revive sweet old memories of yours! :sweat_smile:

PS: If you're a returning reader, you can learn about the new modifications here (the examples marked with asterisk are the ones added in the latest major revision).

So, here we go...

Table of Contents

<!-- Generated using "markdown-toc -i README.md --maxdepth 3"--> <!-- toc --> <!-- tocstop -->

Structure of the Examples

All the examples are structured like below:

▶ Some fancy Title

# Set up the code. # Preparation for the magic...

Output (Python version(s)):

>>> triggering_statement Some unexpected output

(Optional): One line describing the unexpected output.

💡 Explanation:

  • Brief explanation of what's happening and why is it happening.
# Set up code # More examples for further clarification (if necessary)

Output (Python version(s)):

>>> trigger # some example that makes it easy to unveil the magic # some justified output

Note: All the examples are tested on Python 3.5.2 interactive interpreter, and they should work for all the Python versions unless explicitly specified before the output.

Usage

A nice way to get the most out of these examples, in my opinion, is to read them in sequential order, and for every example:

  • Carefully read the initial code for setting up the example. If you're an experienced Python programmer, you'll successfully anticipate what's going to happen next most of the time.
  • Read the output snippets and,
    • Check if the outputs are the same as you'd expect.
    • Make sure if you know the exact reason behind the output being the way it is.
      • If the answer is no (which is perfectly okay), take a deep breath, and read the explanation (and if you still don't understand, shout out! and create an issue here).
      • If yes, give a gentle pat on your back, and you may skip to the next example.

PS: You can also read WTFPython at the command line using the pypi package,

$ pip install wtfpython -U $ wtfpython

👀 Examples

Section: Strain your brain!

▶ First things first! *

<!-- Example ID: d3d73936-3cf1-4632-b5ab-817981338863 --> <!-- read-only -->

For some reason, the Python 3.8's "Walrus" operator (:=) has become quite popular. Let's check it out,

1.

# Python version 3.8+ >>> a = "wtf_walrus" >>> a 'wtf_walrus' >>> a := "wtf_walrus" File "<stdin>", line 1 a := "wtf_walrus" ^ SyntaxError: invalid syntax >>> (a := "wtf_walrus") # This works though 'wtf_walrus' >>> a 'wtf_walrus'

2 .

# Python version 3.8+ >>> a = 6, 9 >>> a (6, 9) >>> (a := 6, 9) (6, 9) >>> a 6 >>> a, b = 6, 9 # Typical unpacking >>> a, b (6, 9) >>> (a, b = 16, 19) # Oops File "<stdin>", line 1 (a, b = 16, 19) ^ SyntaxError: invalid syntax >>> (a, b := 16, 19) # This prints out a weird 3-tuple (6, 16, 19) >>> a # a is still unchanged? 6 >>> b 16

💡 Explanation

Quick walrus operator refresher

The Walrus operator (:=) was introduced in Python 3.8, it can be useful in situations where you'd want to assign values to variables within an expression.

def some_func(): # Assume some expensive computation here # time.sleep(1000) return 5 # So instead of, if some_func(): print(some_func()) # Which is bad practice since computation is happening twice # or a = some_func() if a: print(a) # Now you can concisely write if a := some_func(): print(a)

Output (> 3.8):

5 5 5

This saved one line of code, and implicitly prevented invoking some_func twice.

  • Unparenthesized "assignment expression" (use of walrus operator), is restricted at the top level, hence the SyntaxError in the a := "wtf_walrus" statement of the first snippet. Parenthesizing it worked as expected and assigned a.

  • As usual, parenthesizing of an expression containing = operator is not allowed. Hence the syntax error in (a, b = 6, 9).

  • The syntax of the Walrus operator is of the form NAME:= expr, where NAME is a valid identifier, and expr is a valid expression. Hence, iterable packing and unpacking are not supported which means,

    • (a := 6, 9) is equivalent to ((a := 6), 9) and ultimately (a, 9) (where a's value is 6')

      >>> (a := 6, 9) == ((a := 6), 9) True >>> x = (a := 696, 9) >>> x (696, 9) >>> x[0] is a # Both reference same memory location True
    • Similarly, (a, b := 16, 19) is equivalent to (a, (b := 16), 19) which is nothing but a 3-tuple.


▶ Strings can be tricky sometimes

<!-- Example ID: 30f1d3fc-e267-4b30-84ef-4d9e7091ac1a --->

1.

>>> a = "some_string" >>> id(a) 140420665652016 >>> id("some" + "_" + "string") # Notice that both the ids are same. 140420665652016

2.

>>> a = "wtf" >>> b = "wtf" >>> a is b True >>> a = "wtf!" >>> b = "wtf!" >>> a is b False

3.

>>> a, b = "wtf!", "wtf!" >>> a is b # All versions except 3.7.x True >>> a = "wtf!"; b = "wtf!" >>> a is b # This will print True or False depending on where you're invoking it (python shell / ipython / as a script) False
# This time in file some_file.py a = "wtf!" b = "wtf!" print(a is b) # prints True when the module is invoked!

4.

Output (< Python3.7 )

>>> 'a' * 20 is 'aaaaaaaaaaaaaaaaaaaa' True >>> 'a' * 21 is 'aaaaaaaaaaaaaaaaaaaaa' False

Makes sense, right?

💡 Explanation:

  • The behavior in first and second snippets is due to a CPython optimization (called string interning) that tries to use existing immutable objects in some cases rather than creating a new object every time.
  • After being "interned," many variables may reference the same string object in memory (saving memory thereby).
  • In the snippets above, strings are implicitly interned. The decision of when to implicitly intern a string is implementation-dependent. There are some rules that can be used to guess if a string will be interned or not:
    • All length 0 and length 1 strings are interned.
    • Strings are interned at compile time ('wtf' will be interned but ''.join(['w', 't', 'f']) will not be interned)
    • Strings that are not composed of ASCII letters, digits or underscores, are not interned. This explains why 'wtf!' was not interned due to !. CPython implementation of this rule can be found

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多