awesome-multimodal-in-medical-imaging

awesome-multimodal-in-medical-imaging

医学影像多模态学习应用资源集锦

该项目汇集医学影像多模态学习应用资源,涵盖数据集、综述、报告生成、视觉问答和视觉语言模型等。内容包括大语言模型相关论文,并提供最新论文和代码链接。资源库定期更新,收录超过100篇高质量论文,为医学影像多模态研究提供重要参考。

医学影像多模态学习报告生成视觉问答视觉语言模型Github开源项目

Maintenance PR's Welcome Awesome

Awesome-Multimodal-Applications-In-Medical-Imaging

This repository includes resources on several applications of multi-modal learning in medical imaging, including papers related to <b>large language models (LLM)</b>. Papers involving LLM are bold.

Contributing

Please feel free to send me pull requests or email to add links or to discuss with me about this area. Markdown format:

- [**Name of Conference or Journal + Year**] Paper Name. [[pdf]](link) [[code]](link)

News

Citation

@article{xia2024cares, title={CARES: A Comprehensive Benchmark of Trustworthiness in Medical Vision Language Models}, author={Xia, Peng and Chen, Ze and Tian, Juanxi and Gong, Yangrui and Hou, Ruibo and Xu, Yue and Wu, Zhenbang and Fan, Zhiyuan and Zhou, Yiyang and Zhu, Kangyu and others}, journal={arXiv preprint arXiv:2406.06007}, year={2024} } @article{xia2024rule, title={RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models}, author={Xia, Peng and Zhu, Kangyu and Li, Haoran and Zhu, Hongtu and Li, Yun and Li, Gang and Zhang, Linjun and Yao, Huaxiu}, journal={arXiv preprint arXiv:2407.05131}, year={2024} }

Overview


Data Source

Image-Caption Datasets

datasetdomainimagetextsourcelanguage
ROCOmultiple87K87Kresearch papersEn
MedICaTmultiple217K217Kresearch papersEn
PMC-OAmultiple1.6M1.6Mresearch papersEn
ChiMed-VLmultiple580K580Kresearch papersEn/zh
FFA-IRfundus1M10Kmedical reportsEn/zh
PadChestcxr160K109Kmedical reportsSp
MIMIC-CXRcxr377K227Kmedical reportsEn
OpenPathhistology208K208Ksocial mediaEn
Quilt-1Mhistology1M1Mresearch papers<br>social mediaEn
Harvard-FairVLMedfundus10k10Kmedical reportsEn

Visual Question Answering Datasets

datasetdomainimageQA Itemslanguage
VQA-RADradiology3153kEn
SLAKEradiology64214kEn/zh
Path-VQAhistology5k32MEn
VQA-Medradiology4.5k5.5kEn
PMC-VQAmultiple149k227kEn
OmniMedVQAmultiple118k128kEn
ProbMedradiology6k57kEn

Survey

  • [arXiv 2022] Visual Attention Methods in Deep Learning: An In-Depth Survey [pdf]
  • [arXiv 2022] Vision+X: A Survey on Multimodal Learning in the Light of Data [pdf]
  • [arXiv 2023] Vision Language Models for Vision Tasks: A Survey [pdf] [code]
  • [arXiv 2023] A Systematic Review of Deep Learning-based Research on Radiology Report Generation [pdf] [code]
  • [Artif Intell Med 2023] Medical Visual Question Answering: A Survey [pdf]
  • [arXiv 2023] Medical Vision Language Pretraining: A survey [pdf]
  • [arXiv 2023] CLIP in Medical Imaging: A Comprehensive Survey [pdf] [code]
  • [arXiv 2024] Vision-Language Models for Medical Report Generation and Visual Question Answering: A Review [pdf] [code]

Medical Report Generation

2018

  • [EMNLP 2018] Automated Generation of Accurate & Fluent Medical X-ray Reports [pdf] [code]
  • [ACL 2018] On the Automatic Generation of Medical Imaging Reports [pdf] [code]
  • [NeurIPS 2018] Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation [pdf]

2019

  • [AAAI 2019] Knowledge-Driven Encode, Retrieve, Paraphrase for Medical Image Report Generation [pdf]
  • [ICDM 2019] Automatic Generation of Medical Imaging Diagnostic Report with Hierarchical Recurrent Neural Network [pdf]
  • [MICCAI 2019] Automatic Radiology Report Generation based on Multi-view Image Fusion and Medical Concept Enrichment [pdf]

2020

  • [AAAI 2020] When Radiology Report Generation Meets Knowledge Graph [pdf]
  • [EMNLP 2020] Generating Radiology Reports via Memory-driven Transformer [pdf] [code]
  • [ACCV 2020] Hierarchical X-Ray Report Generation via Pathology tags and Multi Head Attention [pdf] [code]

2021

  • [NeurIPS 2021 D&B] FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark [pdf] [code]
  • [ACL 2021] Competence-based Multimodal Curriculum Learning for Medical Report Generation [pdf]
  • [CVPR 2021] Exploring and Distilling Posterior and Prior Knowledge for Radiology Report Generation [pdf]
  • [MICCAI 2021] AlignTransformer: Hierarchical Alignment of Visual Regions and Disease Tags for Medical Report Generation [pdf]
  • [NAACL-HLT 2021] Improving Factual Completeness and Consistency of Image-to-Text Radiology Report Generation [pdf] [code]
  • [MICCAI 2021] RATCHET: Medical Transformer for Chest X-ray Diagnosis and Reporting [pdf][code]
  • [MICCAI 2021] Trust It or Not: Confidence-Guided Automatic Radiology Report Generation [pdf]
  • [MICCAI 2021] Surgical Instruction Generation with Transformers [pdf]
  • [MICCAI 2021] Class-Incremental Domain Adaptation with Smoothing and Calibration for Surgical Report Generation [pdf] [code]
  • [ACL 2021] Cross-modal Memory Networks for Radiology Report Generation [pdf] [code]

2022

  • [CVPR 2022] Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [pdf]
  • [Nature Machine Intelligence 2022] Generalized Radiograph Representation Learning via Cross-supervision between Images and Free-text Radiology Reports [pdf] [code]
  • [MICCAI 2022] A Self-Guided Framework for Radiology Report Generation [pdf]
  • [MICCAI 2022] A Medical Semantic-Assisted Transformer for Radiographic Report Generation [pdf]
  • [MIDL 2022] Representative Image Feature Extraction via Contrastive Learning Pretraining for Chest X-ray Report Generation [pdf]
  • [MICCAI 2022] RepsNet: Combining Vision with Language for Automated Medical Reports [pdf] [code]
  • [ICML 2022] Improving Radiology Report Generation Systems by Removing Hallucinated References to Non-existent Priors [pdf]
  • [TNNLS 2022] Hybrid Reinforced Medical Report Generation with M-Linear Attention and Repetition Penalty [pdf]
  • [MedIA 2022] CAMANet: Class Activation Map Guided Attention Network for Radiology Report Generation [pdf]
  • [MedIA 2022] Knowledge matters: Chest radiology report generation with general and specific knowledge [pdf] [code]
  • [MICCAI 2022] Lesion Guided Explainable Few Weak-shot Medical Report Generation [pdf] [code]
  • [BMVC 2022] On the Importance of Image Encoding in

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多