bert-base-portuguese-cased-nli-assin-2

bert-base-portuguese-cased-nli-assin-2

提升句子相似度与语义搜索的句子转换器

模型将句子和段落转换为768维向量,用于聚类和语义搜索等任务。可通过安装sentence-transformers库或直接调用HuggingFace Transformers进行操作。采用SoftmaxLoss训练,并通过EmbeddingSimilarityEvaluator评估,结合BertModel与句子池化实现高效转换。

模型训练Huggingfacesentence-transformersGithub开源项目语义搜索模型特征提取句向量

项目介绍:bert-base-portuguese-cased-nli-assin-2

bert-base-portuguese-cased-nli-assin-2是一个基于sentence-transformers的模型,设计用于将句子和段落映射到768维的密集向量空间。这种功能使得它能够应用于如聚类和语义搜索等任务。

使用sentence-transformers

安装sentence-transformers库后,用户可以轻松应用该模型:

pip install -U sentence-transformers

安装后,使用模型的Python代码如下:

from sentence_transformers import SentenceTransformer sentences = ["这是一个示例句子", "每个句子将被转换"] model = SentenceTransformer('bert-base-portuguese-cased-nli-assin-2') embeddings = model.encode(sentences) print(embeddings)

使用HuggingFace Transformers

如果不使用sentence-transformers库,用户也可以通过HuggingFace Transformers库来使用该模型。这个过程需要手动执行pooling操作以从上下文词的嵌入中提取句子嵌入。

from transformers import AutoTokenizer, AutoModel import torch # Mean Pooling - 在聚合平均时考虑注意力掩码 def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # model_output的第一个元素包含所有token的嵌入 input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # 我们希望获得句子嵌入的句子 sentences = ['这是一个示例句子', '每个句子将被转换'] # 从HuggingFace Hub加载模型 tokenizer = AutoTokenizer.from_pretrained('bert-base-portuguese-cased-nli-assin-2') model = AutoModel.from_pretrained('bert-base-portuguese-cased-nli-assin-2') # 对句子进行标记化 encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # 计算token嵌入 with torch.no_grad(): model_output = model(**encoded_input) # 执行pooling操作。在此例中,使用的是mean pooling。 sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("句子嵌入:") print(sentence_embeddings)

模型评估结果

用户可在Sentence Embeddings Benchmark中查看该模型的自动化评估结果:Sentence Embeddings Benchmark

模型训练

该模型的训练参数包括:

  • 数据加载器:使用长度为407的torch.utils.data.dataloader.DataLoader,批大小为16,采用随机采样器。
  • 损失函数:使用SoftmaxLoss
  • 优化器:使用AdamW优化器,学习率为2e-05,权重衰减为0.01。
  • 学习调度:采用WarmupLinear调度策略,热身步数为41。

完整模型架构

该模型的完整架构如下:

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

引用与作者

有关更多信息及其引用格式,用户可以参考相关文献及资源。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多