The Python interface to the Redis key-value store.
Installation | Usage | Advanced Topics | Contributing
**Note: ** redis-py 5.0 will be the last version of redis-py to support Python 3.7, as it has reached end of life. redis-py 5.1 will support Python 3.8+.
Learn for free at Redis University
Start a redis via docker:
docker run -p 6379:6379 -it redis/redis-stack:latest
To install redis-py, simply:
$ pip install redis
For faster performance, install redis with hiredis support, this provides a compiled response parser, and for most cases requires zero code changes. By default, if hiredis >= 1.0 is available, redis-py will attempt to use it for response parsing.
$ pip install "redis[hiredis]"
Looking for a high-level library to handle object mapping? See redis-om-python!
The most recent version of this library supports redis version 5.0, 6.0, 6.2, 7.0 and 7.2.
The table below highlights version compatibility of the most-recent library versions and redis versions.
| Library version | Supported redis versions |
|---|---|
| 3.5.3 | <= 6.2 Family of releases |
| >= 4.5.0 | Version 5.0 to 7.0 |
| >= 5.0.0 | Version 5.0 to current |
>>> import redis >>> r = redis.Redis(host='localhost', port=6379, db=0) >>> r.set('foo', 'bar') True >>> r.get('foo') b'bar'
The above code connects to localhost on port 6379, sets a value in Redis, and retrieves it. All responses are returned as bytes in Python, to receive decoded strings, set decode_responses=True. For this, and more connection options, see these examples.
To enable support for RESP3, ensure you have at least version 5.0 of the client, and change your connection object to include protocol=3
>>> import redis >>> r = redis.Redis(host='localhost', port=6379, db=0, protocol=3)
By default, redis-py uses a connection pool to manage connections. Each instance of a Redis class receives its own connection pool. You can however define your own redis.ConnectionPool.
>>> pool = redis.ConnectionPool(host='localhost', port=6379, db=0) >>> r = redis.Redis(connection_pool=pool)
Alternatively, you might want to look at Async connections, or Cluster connections, or even Async Cluster connections.
There is built-in support for all of the out-of-the-box Redis commands. They are exposed using the raw Redis command names (HSET, HGETALL, etc.) except where a word (i.e. del) is reserved by the language. The complete set of commands can be found here, or the documentation.
The official Redis command documentation does a great job of explaining each command in detail. redis-py attempts to adhere to the official command syntax. There are a few exceptions:
MULTI/EXEC: These are implemented as part of the Pipeline class. The pipeline is wrapped with the MULTI and EXEC statements by default when it is executed, which can be disabled by specifying transaction=False. See more about Pipelines below.
SUBSCRIBE/LISTEN: Similar to pipelines, PubSub is implemented as a separate class as it places the underlying connection in a state where it can't execute non-pubsub commands. Calling the pubsub method from the Redis client will return a PubSub instance where you can subscribe to channels and listen for messages. You can only call PUBLISH from the Redis client (see this comment on issue #151 for details).
For more details, please see the documentation on advanced topics page.
The following is a basic example of a Redis pipeline, a method to optimize round-trip calls, by batching Redis commands, and receiving their results as a list.
>>> pipe = r.pipeline() >>> pipe.set('foo', 5) >>> pipe.set('bar', 18.5) >>> pipe.set('blee', "hello world!") >>> pipe.execute() [True, True, True]
The following example shows how to utilize Redis Pub/Sub to subscribe to specific channels.
>>> r = redis.Redis(...) >>> p = r.pubsub() >>> p.subscribe('my-first-channel', 'my-second-channel', ...) >>> p.get_message() {'pattern': None, 'type': 'subscribe', 'channel': b'my-second-channel', 'data': 1}
redis-py is developed and maintained by Redis Inc. It can be found here, or downloaded from pypi.
Special thanks to:


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、 可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能 生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大 语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号