redis-py

redis-py

Redis官方Python客户端库实现高效数据存储与检索

redis-py是Redis官方Python客户端库,支持Redis 5.0至7.2版本。该库提供简洁API,实现连接池、管道操作和发布订阅等功能。开发者可通过redis-py在Python应用中与Redis交互,实现高效数据存储和检索。支持RESP3协议,可选用hiredis加速解析,适用于多种Redis使用场景。该库为开发者提供了灵活且可靠的Redis操作工具。

RedisPython数据库键值存储缓存Github开源项目

redis-py

The Python interface to the Redis key-value store.

CI docs MIT licensed pypi pre-release codecov

Installation | Usage | Advanced Topics | Contributing


**Note: ** redis-py 5.0 will be the last version of redis-py to support Python 3.7, as it has reached end of life. redis-py 5.1 will support Python 3.8+.


How do I Redis?

Learn for free at Redis University

Try the Redis Cloud

Dive in developer tutorials

Join the Redis community

Work at Redis

Installation

Start a redis via docker:

docker run -p 6379:6379 -it redis/redis-stack:latest

To install redis-py, simply:

$ pip install redis

For faster performance, install redis with hiredis support, this provides a compiled response parser, and for most cases requires zero code changes. By default, if hiredis >= 1.0 is available, redis-py will attempt to use it for response parsing.

$ pip install "redis[hiredis]"

Looking for a high-level library to handle object mapping? See redis-om-python!

Supported Redis Versions

The most recent version of this library supports redis version 5.0, 6.0, 6.2, 7.0 and 7.2.

The table below highlights version compatibility of the most-recent library versions and redis versions.

Library versionSupported redis versions
3.5.3<= 6.2 Family of releases
>= 4.5.0Version 5.0 to 7.0
>= 5.0.0Version 5.0 to current

Usage

Basic Example

>>> import redis >>> r = redis.Redis(host='localhost', port=6379, db=0) >>> r.set('foo', 'bar') True >>> r.get('foo') b'bar'

The above code connects to localhost on port 6379, sets a value in Redis, and retrieves it. All responses are returned as bytes in Python, to receive decoded strings, set decode_responses=True. For this, and more connection options, see these examples.

RESP3 Support

To enable support for RESP3, ensure you have at least version 5.0 of the client, and change your connection object to include protocol=3

>>> import redis >>> r = redis.Redis(host='localhost', port=6379, db=0, protocol=3)

Connection Pools

By default, redis-py uses a connection pool to manage connections. Each instance of a Redis class receives its own connection pool. You can however define your own redis.ConnectionPool.

>>> pool = redis.ConnectionPool(host='localhost', port=6379, db=0) >>> r = redis.Redis(connection_pool=pool)

Alternatively, you might want to look at Async connections, or Cluster connections, or even Async Cluster connections.

Redis Commands

There is built-in support for all of the out-of-the-box Redis commands. They are exposed using the raw Redis command names (HSET, HGETALL, etc.) except where a word (i.e. del) is reserved by the language. The complete set of commands can be found here, or the documentation.

Advanced Topics

The official Redis command documentation does a great job of explaining each command in detail. redis-py attempts to adhere to the official command syntax. There are a few exceptions:

  • MULTI/EXEC: These are implemented as part of the Pipeline class. The pipeline is wrapped with the MULTI and EXEC statements by default when it is executed, which can be disabled by specifying transaction=False. See more about Pipelines below.

  • SUBSCRIBE/LISTEN: Similar to pipelines, PubSub is implemented as a separate class as it places the underlying connection in a state where it can't execute non-pubsub commands. Calling the pubsub method from the Redis client will return a PubSub instance where you can subscribe to channels and listen for messages. You can only call PUBLISH from the Redis client (see this comment on issue #151 for details).

For more details, please see the documentation on advanced topics page.

Pipelines

The following is a basic example of a Redis pipeline, a method to optimize round-trip calls, by batching Redis commands, and receiving their results as a list.

>>> pipe = r.pipeline() >>> pipe.set('foo', 5) >>> pipe.set('bar', 18.5) >>> pipe.set('blee', "hello world!") >>> pipe.execute() [True, True, True]

PubSub

The following example shows how to utilize Redis Pub/Sub to subscribe to specific channels.

>>> r = redis.Redis(...) >>> p = r.pubsub() >>> p.subscribe('my-first-channel', 'my-second-channel', ...) >>> p.get_message() {'pattern': None, 'type': 'subscribe', 'channel': b'my-second-channel', 'data': 1}

Author

redis-py is developed and maintained by Redis Inc. It can be found here, or downloaded from pypi.

Special thanks to:

  • Andy McCurdy (sedrik@gmail.com) the original author of redis-py.
  • Ludovico Magnocavallo, author of the original Python Redis client, from which some of the socket code is still used.
  • Alexander Solovyov for ideas on the generic response callback system.
  • Paul Hubbard for initial packaging support.

Redis

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多