sqllineage

sqllineage

SQL血缘分析工具 简化数据库关系追踪

SQLLineage是一个开源的SQL血缘分析工具,基于Python开发。它能解析SQL命令,识别表间关系,支持多种SQL方言。该工具提供列级血缘分析、元数据感知等功能,并可生成可视化血缘图。SQLLineage简化了数据库关系追踪过程,适合需要分析复杂SQL结构的数据工程师和分析师使用。

SQLLineageSQL分析数据血缘Python工具数据库Github开源项目

SQLLineage

SQL Lineage Analysis Tool powered by Python

image image image image Build Status Documentation Status codecov Code style: black security: bandit

Never get the hang of a SQL parser? SQLLineage comes to the rescue. Given a SQL command, SQLLineage will tell you its source and target tables, without worrying about Tokens, Keyword, Identifier and all the jagons used by SQL parsers.

Behind the scene, SQLLineage pluggable leverages parser library (sqlfluff and sqlparse) to parse the SQL command, analyze the AST, stores the lineage information in a graph (using graph library networkx), and brings you all the human-readable result with ease.

Demo & Documentation

Talk is cheap, show me a demo.

Documentation is online hosted by readthedocs, and you can check the release note there.

Quick Start

Install sqllineage via PyPI:

$ pip install sqllineage

Using sqllineage command to parse a quoted-query-string:

$ sqllineage -e "insert into db1.table1 select * from db2.table2"
Statements(#): 1
Source Tables:
    db2.table2
Target Tables:
    db1.table1

Or you can parse a SQL file with -f option:

$ sqllineage -f foo.sql
Statements(#): 1
Source Tables:
    db1.table_foo
    db1.table_bar
Target Tables:
    db2.table_baz

Advanced Usage

Multiple SQL Statements

Lineage is combined from multiple SQL statements, with intermediate tables identified:

$ sqllineage -e "insert into db1.table1 select * from db2.table2; insert into db3.table3 select * from db1.table1;"
Statements(#): 2
Source Tables:
    db2.table2
Target Tables:
    db3.table3
Intermediate Tables:
    db1.table1

Verbose Lineage Result

And if you want to see lineage for each SQL statement, just toggle verbose option

$ sqllineage -v -e "insert into db1.table1 select * from db2.table2; insert into db3.table3 select * from db1.table1;"
Statement #1: insert into db1.table1 select * from db2.table2;
    table read: [Table: db2.table2]
    table write: [Table: db1.table1]
    table cte: []
    table rename: []
    table drop: []
Statement #2: insert into db3.table3 select * from db1.table1;
    table read: [Table: db1.table1]
    table write: [Table: db3.table3]
    table cte: []
    table rename: []
    table drop: []
==========
Summary:
Statements(#): 2
Source Tables:
    db2.table2
Target Tables:
    db3.table3
Intermediate Tables:
    db1.table1

Dialect-Awareness Lineage

By default, sqllineage use ansi dialect to parse and validate your SQL. However, some SQL syntax you take for granted in daily life might not be in ANSI standard. In addition, different SQL dialects have different set of SQL keywords, further weakening sqllineage's capabilities when keyword used as table name or column name. To get the most out of sqllineage, we strongly encourage you to pass the dialect to assist the lineage analyzing.

Take below example, INSERT OVERWRITE statement is only supported by big data solutions like Hive/SparkSQL, and MAP is a reserved keyword in Hive thus can not be used as table name while it is not for SparkSQL. Both ansi and hive dialect tell you this causes syntax error and sparksql gives the correct result:

$ sqllineage -e "INSERT OVERWRITE TABLE map SELECT * FROM foo"
...
sqllineage.exceptions.InvalidSyntaxException: This SQL statement is unparsable, please check potential syntax error for SQL

$ sqllineage -e "INSERT OVERWRITE TABLE map SELECT * FROM foo" --dialect=hive
...
sqllineage.exceptions.InvalidSyntaxException: This SQL statement is unparsable, please check potential syntax error for SQL

$ sqllineage -e "INSERT OVERWRITE TABLE map SELECT * FROM foo" --dialect=sparksql
Statements(#): 1
Source Tables:
    <default>.foo
Target Tables:
    <default>.map

Use sqllineage --dialects to see all available dialects.

Column-Level Lineage

We also support column level lineage in command line interface, set level option to column, all column lineage path will be printed.

INSERT INTO foo SELECT a.col1, b.col1 AS col2, c.col3_sum AS col3, col4, d.* FROM bar a JOIN baz b ON a.id = b.bar_id LEFT JOIN (SELECT bar_id, sum(col3) AS col3_sum FROM qux GROUP BY bar_id) c ON a.id = sq.bar_id CROSS JOIN quux d; INSERT INTO corge SELECT a.col1, a.col2 + b.col2 AS col2 FROM foo a LEFT JOIN grault b ON a.col1 = b.col1;

Suppose this sql is stored in a file called test.sql

$ sqllineage -f test.sql -l column
<default>.corge.col1 <- <default>.foo.col1 <- <default>.bar.col1
<default>.corge.col2 <- <default>.foo.col2 <- <default>.baz.col1
<default>.corge.col2 <- <default>.grault.col2
<default>.foo.* <- <default>.quux.*
<default>.foo.col3 <- c.col3_sum <- <default>.qux.col3
<default>.foo.col4 <- col4

MetaData-Awareness Lineage

By observing the column lineage generated from previous step, you'll possibly notice that:

  1. <default>.foo.* <- <default>.quux.*: the wildcard is not expanded.
  2. <default>.foo.col4 <- col4: col4 is not assigned with source table.

It's not perfect because we don't know the columns encoded in * of table quux. Likewise, given the context, col4 could be coming from bar, baz or quux. Without metadata, this is the best sqllineage can do.

User can optionally provide the metadata information to sqllineage to improve the lineage result.

Suppose all the tables are created in sqlite database with a file called db.db. In particular, table quux has columns col5 and col6 and baz has column col4.

sqlite3 db.db 'CREATE TABLE IF NOT EXISTS baz (bar_id int, col1 int, col4 int)'; sqlite3 db.db 'CREATE TABLE IF NOT EXISTS quux (quux_id int, col5 int, col6 int)';

Now given the same SQL, column lineage is fully resolved.

$ SQLLINEAGE_DEFAULT_SCHEMA=main sqllineage -f test.sql -l column --sqlalchemy_url=sqlite:///db.db main.corge.col1 <- main.foo.col1 <- main.bar.col1 main.corge.col2 <- main.foo.col2 <- main.bar.col1 main.corge.col2 <- main.grault.col2 main.foo.col3 <- c.col3_sum <- main.qux.col3 main.foo.col4 <- main.baz.col4 main.foo.col5 <- main.quux.col5 main.foo.col6 <- main.quux.col6

The default schema name in sqlite is called main, we have to specify here because the tables in SQL file are unqualified.

SQLLineage leverages sqlalchemy to retrieve metadata from different SQL databases. Check for more details on SQLLineage MetaData.

Lineage Visualization

One more cool feature, if you want a graph visualization for the lineage result, toggle graph-visualization option

Still using the above SQL file

sqllineage -g -f foo.sql

A webserver will be started, showing DAG representation of the lineage result in browser:

  • Table-Level Lineage
<img src="https://raw.githubusercontent.com/reata/sqllineage/master/docs/_static/table.jpg" alt="Table-Level Lineage">
  • Column-Level Lineage
<img src="https://raw.githubusercontent.com/reata/sqllineage/master/docs/_static/column.jpg" alt="Column-Level Lineage">

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多