SQL Lineage Analysis Tool powered by Python
Never get the hang of a SQL parser? SQLLineage comes to the rescue. Given a SQL command, SQLLineage will tell you its source and target tables, without worrying about Tokens, Keyword, Identifier and all the jagons used by SQL parsers.
Behind the scene, SQLLineage pluggable leverages parser library (sqlfluff
and sqlparse) to parse the SQL command, analyze the AST, stores the lineage
information in a graph (using graph library networkx), and brings you all the
human-readable result with ease.
Talk is cheap, show me a demo.
Documentation is online hosted by readthedocs, and you can check the release note there.
Install sqllineage via PyPI:
$ pip install sqllineage
Using sqllineage command to parse a quoted-query-string:
$ sqllineage -e "insert into db1.table1 select * from db2.table2"
Statements(#): 1
Source Tables:
    db2.table2
Target Tables:
    db1.table1
Or you can parse a SQL file with -f option:
$ sqllineage -f foo.sql
Statements(#): 1
Source Tables:
    db1.table_foo
    db1.table_bar
Target Tables:
    db2.table_baz
Lineage is combined from multiple SQL statements, with intermediate tables identified:
$ sqllineage -e "insert into db1.table1 select * from db2.table2; insert into db3.table3 select * from db1.table1;"
Statements(#): 2
Source Tables:
    db2.table2
Target Tables:
    db3.table3
Intermediate Tables:
    db1.table1
And if you want to see lineage for each SQL statement, just toggle verbose option
$ sqllineage -v -e "insert into db1.table1 select * from db2.table2; insert into db3.table3 select * from db1.table1;"
Statement #1: insert into db1.table1 select * from db2.table2;
    table read: [Table: db2.table2]
    table write: [Table: db1.table1]
    table cte: []
    table rename: []
    table drop: []
Statement #2: insert into db3.table3 select * from db1.table1;
    table read: [Table: db1.table1]
    table write: [Table: db3.table3]
    table cte: []
    table rename: []
    table drop: []
==========
Summary:
Statements(#): 2
Source Tables:
    db2.table2
Target Tables:
    db3.table3
Intermediate Tables:
    db1.table1
By default, sqllineage use ansi dialect to parse and validate your SQL. However, some SQL syntax you take for granted
in daily life might not be in ANSI standard. In addition, different SQL dialects have different set of SQL keywords,
further weakening sqllineage's capabilities when keyword used as table name or column name. To get the most out of
sqllineage, we strongly encourage you to pass the dialect to assist the lineage analyzing.
Take below example, INSERT OVERWRITE statement is only supported by big data solutions like Hive/SparkSQL, and MAP
is a reserved keyword in Hive thus can not be used as table name while it is not for SparkSQL. Both ansi and hive dialect
tell you this causes syntax error and sparksql gives the correct result:
$ sqllineage -e "INSERT OVERWRITE TABLE map SELECT * FROM foo"
...
sqllineage.exceptions.InvalidSyntaxException: This SQL statement is unparsable, please check potential syntax error for SQL
$ sqllineage -e "INSERT OVERWRITE TABLE map SELECT * FROM foo" --dialect=hive
...
sqllineage.exceptions.InvalidSyntaxException: This SQL statement is unparsable, please check potential syntax error for SQL
$ sqllineage -e "INSERT OVERWRITE TABLE map SELECT * FROM foo" --dialect=sparksql
Statements(#): 1
Source Tables:
    <default>.foo
Target Tables:
    <default>.map
Use sqllineage --dialects to see all available dialects.
We also support column level lineage in command line interface, set level option to column, all column lineage path will be printed.
INSERT INTO foo SELECT a.col1, b.col1 AS col2, c.col3_sum AS col3, col4, d.* FROM bar a JOIN baz b ON a.id = b.bar_id LEFT JOIN (SELECT bar_id, sum(col3) AS col3_sum FROM qux GROUP BY bar_id) c ON a.id = sq.bar_id CROSS JOIN quux d; INSERT INTO corge SELECT a.col1, a.col2 + b.col2 AS col2 FROM foo a LEFT JOIN grault b ON a.col1 = b.col1;
Suppose this sql is stored in a file called test.sql
$ sqllineage -f test.sql -l column
<default>.corge.col1 <- <default>.foo.col1 <- <default>.bar.col1
<default>.corge.col2 <- <default>.foo.col2 <- <default>.baz.col1
<default>.corge.col2 <- <default>.grault.col2
<default>.foo.* <- <default>.quux.*
<default>.foo.col3 <- c.col3_sum <- <default>.qux.col3
<default>.foo.col4 <- col4
By observing the column lineage generated from previous step, you'll possibly notice that:
<default>.foo.* <- <default>.quux.*: the wildcard is not expanded.<default>.foo.col4 <- col4: col4 is not assigned with source table.It's not perfect because we don't know the columns encoded in * of table quux. Likewise, given the context,
col4 could be coming from bar, baz or quux. Without metadata, this is the best sqllineage can do.
User can optionally provide the metadata information to sqllineage to improve the lineage result.
Suppose all the tables are created in sqlite database with a file called db.db. In particular,
table quux has columns col5 and col6 and baz has column col4.
sqlite3 db.db 'CREATE TABLE IF NOT EXISTS baz (bar_id int, col1 int, col4 int)'; sqlite3 db.db 'CREATE TABLE IF NOT EXISTS quux (quux_id int, col5 int, col6 int)';
Now given the same SQL, column lineage is fully resolved.
$ SQLLINEAGE_DEFAULT_SCHEMA=main sqllineage -f test.sql -l column --sqlalchemy_url=sqlite:///db.db main.corge.col1 <- main.foo.col1 <- main.bar.col1 main.corge.col2 <- main.foo.col2 <- main.bar.col1 main.corge.col2 <- main.grault.col2 main.foo.col3 <- c.col3_sum <- main.qux.col3 main.foo.col4 <- main.baz.col4 main.foo.col5 <- main.quux.col5 main.foo.col6 <- main.quux.col6
The default schema name in sqlite is called main, we have to specify here because the tables in SQL file are unqualified.
SQLLineage leverages sqlalchemy to retrieve metadata from different SQL databases.
Check for more details on SQLLineage MetaData.
One more cool feature, if you want a graph visualization for the lineage result, toggle graph-visualization option
Still using the above SQL file
sqllineage -g -f foo.sql
A webserver will be started, showing DAG representation of the lineage result in browser:


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作


AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号