raft

raft

可复用CUDA函数库加速向量搜索与机器学习

RAFT是一个CUDA加速的C++头文件库,为机器学习和信息检索提供基础算法和原语。它实现了先进的向量相似度搜索方法,包括暴力搜索、IVF-Flat、IVF-PQ和CAGRA。RAFT还提供可重用原语,用于构建涵盖数据生成、模型评估、分类回归、聚类等领域的机器学习算法。通过跨项目复用和集中核心计算,RAFT加速了算法开发,并使未来优化能广泛应用于各种算法。

RAFTGPU加速机器学习向量搜索CUDAGithub开源项目

<div align="left"><img src="https://rapids.ai/assets/images/rapids_logo.png" width="90px"/> RAFT: Reusable Accelerated Functions and Tools for Vector Search and More</div>

[!IMPORTANT] The vector search and clustering algorithms in RAFT are being migrated to a new library dedicated to vector search called cuVS. We will continue to support the vector search algorithms in RAFT during this move, but will no longer update them after the RAPIDS 24.06 (June) release. We plan to complete the migration by RAPIDS 24.08 (August) release.

RAFT tech stack

Contents

<hr>
  1. Useful Resources
  2. What is RAFT?
  3. Use cases
  4. Is RAFT right for me?
  5. Getting Started
  6. Installing RAFT
  7. Codebase structure and contents
  8. Contributing
  9. References
<hr>

Useful Resources

What is RAFT?

RAFT contains fundamental widely-used algorithms and primitives for machine learning and information retrieval. The algorithms are CUDA-accelerated and form building blocks for more easily writing high performance applications.

By taking a primitives-based approach to algorithm development, RAFT

  • accelerates algorithm construction time
  • reduces the maintenance burden by maximizing reuse across projects, and
  • centralizes core reusable computations, allowing future optimizations to benefit all algorithms that use them.

While not exhaustive, the following general categories help summarize the accelerated functions in RAFT:

CategoryAccelerated Functions in RAFT
Nearest Neighborsvector search, neighborhood graph construction, epsilon neighborhoods, pairwise distances
Basic Clusteringspectral clustering, hierarchical clustering, k-means
Solverscombinatorial optimization, iterative solvers
Data Formatssparse & dense, conversions, data generation
Dense Operationslinear algebra, matrix and vector operations, reductions, slicing, norms, factorization, least squares, svd & eigenvalue problems
Sparse Operationslinear algebra, eigenvalue problems, slicing, norms, reductions, factorization, symmetrization, components & labeling
Statisticssampling, moments and summary statistics, metrics, model evaluation
Tools & Utilitiescommon tools and utilities for developing CUDA applications, multi-node multi-gpu infrastructure

RAFT is a C++ header-only template library with an optional shared library that

  1. can speed up compile times for common template types, and
  2. provides host-accessible "runtime" APIs, which don't require a CUDA compiler to use

In addition being a C++ library, RAFT also provides 2 Python libraries:

  • pylibraft - lightweight Python wrappers around RAFT's host-accessible "runtime" APIs.
  • raft-dask - multi-node multi-GPU communicator infrastructure for building distributed algorithms on the GPU with Dask.

RAFT is a C++ header-only template library with optional shared library and lightweight Python wrappers

Use cases

Vector Similarity Search

RAFT contains state-of-the-art implementations of approximate nearest neighbors search (ANNS) algorithms on the GPU, such as:

  • Brute force. Performs a brute force nearest neighbors search without an index.
  • IVF-Flat and IVF-PQ. Use an inverted file index structure to map contents to their locations. IVF-PQ additionally uses product quantization to reduce the memory usage of vectors. These methods were originally popularized by the FAISS library.
  • CAGRA (Cuda Anns GRAph-based). Uses a fast ANNS graph construction and search implementation optimized for the GPU. CAGRA outperforms state-of-the art CPU methods (i.e. HNSW) for large batch queries, single queries, and graph construction time.

Projects that use the RAFT ANNS algorithms for accelerating vector search include: Milvus, Redis, and Faiss.

Please see the example Jupyter notebook to get started RAFT for vector search in Python.

Information Retrieval

RAFT contains a catalog of reusable primitives for composing algorithms that require fast neighborhood computations, such as

  1. Computing distances between vectors and computing kernel gramm matrices
  2. Performing ball radius queries for constructing epsilon neighborhoods
  3. Clustering points to partition a space for smaller and faster searches
  4. Constructing neighborhood "connectivities" graphs from dense vectors

Machine Learning

RAFT's primitives are used in several RAPIDS libraries, including cuML, cuGraph, and cuOpt to build many end-to-end machine learning algorithms that span a large spectrum of different applications, including

  • data generation
  • model evaluation
  • classification and regression
  • clustering
  • manifold learning
  • dimensionality reduction.

RAFT is also used by the popular collaborative filtering library implicit for recommender systems.

Is RAFT right for me?

RAFT contains low-level primitives for accelerating applications and workflows. Data source providers and application developers may find specific tools -- like ANN algorithms -- very useful. RAFT is not intended to be used directly by data scientists for discovery and experimentation. For data science tools, please see the RAPIDS website.

Getting started

RAPIDS Memory Manager (RMM)

RAFT relies heavily on RMM which eases the burden of configuring different allocation strategies globally across the libraries that use it.

Multi-dimensional Arrays

The APIs in RAFT accept the mdspan multi-dimensional array view for representing data in higher dimensions similar to the ndarray in the Numpy Python library. RAFT also contains the corresponding owning mdarray structure, which simplifies the allocation and management of multi-dimensional data in both host and device (GPU) memory.

The mdarray forms a convenience layer over RMM and can be constructed in RAFT using a number of different helper functions:

#include <raft/core/device_mdarray.hpp> int n_rows = 10; int n_cols = 10; auto scalar = raft::make_device_scalar<float>(handle, 1.0); auto vector = raft::make_device_vector<float>(handle, n_cols); auto matrix = raft::make_device_matrix<float>(handle, n_rows, n_cols);

C++ Example

Most of the primitives in RAFT accept a raft::device_resources object for the management of resources which are expensive to create, such CUDA streams, stream pools, and handles to other CUDA libraries like cublas and cusolver.

The example below demonstrates creating a RAFT handle and using it with device_matrix and device_vector to allocate memory, generating random clusters, and computing pairwise Euclidean distances:

#include <raft/core/device_resources.hpp> #include <raft/core/device_mdarray.hpp> #include <raft/random/make_blobs.cuh> #include <raft/distance/distance.cuh> raft::device_resources handle; int n_samples = 5000; int n_features = 50; auto input = raft::make_device_matrix<float, int>(handle, n_samples, n_features); auto labels = raft::make_device_vector<int, int>(handle, n_samples); auto output = raft::make_device_matrix<float, int>(handle, n_samples, n_samples); raft::random::make_blobs(handle, input.view(), labels.view()); auto metric = raft::distance::DistanceType::L2SqrtExpanded; raft::distance::pairwise_distance(handle, input.view(), input.view(), output.view(), metric);

It's also possible to create raft::device_mdspan views to invoke the same API with raw pointers and shape information:

#include <raft/core/device_resources.hpp> #include <raft/core/device_mdspan.hpp> #include <raft/random/make_blobs.cuh> #include <raft/distance/distance.cuh> raft::device_resources handle; int n_samples = 5000; int n_features = 50; float *input; int *labels; float *output; ... // Allocate input, labels, and output pointers ... auto input_view = raft::make_device_matrix_view(input, n_samples, n_features); auto labels_view = raft::make_device_vector_view(labels, n_samples); auto output_view = raft::make_device_matrix_view(output, n_samples, n_samples); raft::random::make_blobs(handle, input_view, labels_view); auto metric = raft::distance::DistanceType::L2SqrtExpanded; raft::distance::pairwise_distance(handle, input_view, input_view, output_view, metric);

Python Example

The pylibraft package contains a Python API for RAFT algorithms and primitives. pylibraft integrates nicely into other libraries by being very lightweight with minimal dependencies and accepting any object that supports the __cuda_array_interface__, such as CuPy's ndarray. The number of RAFT algorithms exposed in this package is continuing to grow from release to release.

The example below demonstrates computing the pairwise Euclidean distances between CuPy arrays. Note that CuPy is not a required dependency for pylibraft.

import cupy as cp from pylibraft.distance import pairwise_distance n_samples = 5000 n_features = 50 in1 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) in2 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) output = pairwise_distance(in1, in2, metric="euclidean")

The output array in the above example is of type raft.common.device_ndarray, which supports cuda_array_interface making it interoperable with other libraries like CuPy, Numba, PyTorch and RAPIDS cuDF that also support it. CuPy supports DLPack, which also enables zero-copy conversion from raft.common.device_ndarray to JAX and Tensorflow.

Below is an example of converting the output pylibraft.device_ndarray to a CuPy array:

cupy_array = cp.asarray(output)

And converting to a PyTorch tensor:

import torch torch_tensor = torch.as_tensor(output, device='cuda')

Or converting to a RAPIDS cuDF dataframe:

cudf_dataframe = cudf.DataFrame(output)

When the corresponding library has been installed and available in your environment, this conversion can also be done automatically by all RAFT compute APIs by setting a global configuration option:

import pylibraft.config pylibraft.config.set_output_as("cupy") # All compute APIs will return cupy arrays pylibraft.config.set_output_as("torch") # All compute APIs will return torch tensors

You can also specify a callable that accepts a pylibraft.common.device_ndarray and performs a custom conversion. The following example converts all output to numpy arrays:

pylibraft.config.set_output_as(lambda device_ndarray: return device_ndarray.copy_to_host())

pylibraft also supports writing to a pre-allocated output array so any __cuda_array_interface__ supported array can be written to in-place:

import cupy as cp from pylibraft.distance import pairwise_distance n_samples = 5000 n_features = 50 in1 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) in2 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) output = cp.empty((n_samples, n_samples), dtype=cp.float32) pairwise_distance(in1, in2, out=output, metric="euclidean")

Installing

RAFT's C++ and Python libraries can both be installed through Conda and the Python libraries through Pip.

Installing C++ and Python through Conda

The easiest way to install RAFT is through conda and several packages are provided.

  • libraft-headers C++ headers
  • libraft (optional) C++ shared library containing pre-compiled template instantiations and runtime API.
  • pylibraft (optional) Python library
  • raft-dask (optional) Python library for deployment of multi-node multi-GPU algorithms that use the RAFT raft::comms abstraction layer in Dask clusters.
  • raft-ann-bench (optional) Benchmarking tool for easily producing benchmarks that compare RAFT's vector search algorithms against other state-of-the-art implementations.
  • raft-ann-bench-cpu (optional) Reproducible benchmarking tool similar to above, but doesn't require CUDA to be installed on the machine. Can be used to test in environments with competitive CPUs.

Use the following command, depending on your CUDA version, to install all of the RAFT packages with conda (replace rapidsai with rapidsai-nightly to install more up-to-date but less stable nightly packages). mamba is preferred over the conda command.

# for CUDA 11.8 mamba install -c rapidsai -c conda-forge -c nvidia raft-dask pylibraft cuda-version=11.8
# for CUDA 12.5 mamba install -c rapidsai -c conda-forge -c nvidia raft-dask pylibraft cuda-version=12.5

Note that the above commands will also install libraft-headers and libraft.

You can also install the conda packages individually using the mamba command above. For example, if you'd like to install RAFT's headers and pre-compiled shared library to use in your project:

# for CUDA 12.5 mamba install -c rapidsai -c conda-forge -c nvidia libraft libraft-headers cuda-version=12.5

If installing the C++ APIs please see using libraft for more information on using the pre-compiled shared library. You can also refer to the example C++ template project for a ready-to-go CMake configuration that you can drop into your project and build against installed RAFT development artifacts above.

Installing Python through Pip

pylibraft and raft-dask both have experimental packages that can be installed through pip:

pip install pylibraft-cu11 --extra-index-url=https://pypi.nvidia.com pip install raft-dask-cu11 --extra-index-url=https://pypi.nvidia.com

These packages statically build RAFT's pre-compiled instantiations and so the C++ headers and pre-compiled shared library won't be readily available to use in your code.

The build instructions contain more details on building RAFT from source and including it in downstream projects. You can also find a more comprehensive version of the above CPM code snippet the Building RAFT C++ and Python from source section of the build instructions.

You can find an example RAFT project template in the cpp/template directory, which demonstrates how to build a new application with RAFT or incorporate RAFT into an existing CMake project.

Contributing

If you are interested in contributing to the RAFT project, please read our Contributing guidelines. Refer to the Developer Guide for details on the developer guidelines, workflows, and principals.

References

When citing RAFT generally, please consider referencing this Github project.

@misc{rapidsai, title={Rapidsai/raft: RAFT contains fundamental widely-used algorithms and primitives for data science, Graph and machine learning.}, url={https://github.com/rapidsai/raft}, journal={GitHub}, publisher={Nvidia RAPIDS}, author={Rapidsai}, year={2022} }

If citing the sparse pairwise distances API, please consider using the following bibtex:

@article{nolet2021semiring,

编辑推荐精选

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多