yolov8-streamlit-detection-tracking

yolov8-streamlit-detection-tracking

YOLOv8和Streamlit打造的实时目标检测追踪应用

该项目基于YOLOv8和Streamlit开发,提供实时目标检测和追踪功能的Web应用。支持RTSP、UDP、YouTube等多种视频源,以及静态视频和图像处理。用户可通过直观界面调整模型参数,查看可视化结果并下载。项目展示了计算机视觉与Web应用的集成,适合学习和演示目的。

YOLOv8Streamlit实时目标检测对象追踪计算机视觉Github开源项目

<span style="color:deepskyblue"> Real-time Object Detection and Tracking with YOLOv8 & Streamlit </span>

This repository is an extensive open-source project showcasing the seamless integration of object detection and tracking using YOLOv8 (object detection algorithm), along with Streamlit (a popular Python web application framework for creating interactive web apps). The project offers a user-friendly and customizable interface designed to detect and track objects in real-time video streams from sources such as RTSP, UDP, and YouTube URLs, as well as static videos and images.

<span style="color:deepskyblue">Explore Implementation Details on Medium (3 parts blog series) </span>

For a deeper dive into the implementation, check out my three-part blog series on Medium, where I detail the step-by-step process of creating this web application.

<span style="color:deepskyblue">WebApp Demo on Streamlit Server</span>

Thank you team Streamlit for the community support for the cloud upload.

This app is up and running on Streamlit cloud server!!! You can check the demo of this web application on this link yolov8-streamlit-detection-tracking-webapp

Note: In the demo, Due to non-availability of GPUs, you may encounter slow video inferencing.

<span style="color:deepskyblue"> Tracking With Object Detection Demo</span>

https://user-images.githubusercontent.com/104087274/234874398-75248e8c-6965-4c91-9176-622509f0ad86.mov

Overview

https://github.com/user-attachments/assets/85df351a-371c-47e0-91a0-a816cf468d19.mov

Demo Pics

Home page

<img src="https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/assets/pic1.png" >

Page after uploading an image and object detection

<img src="https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/assets/pic3.png" >

Segmentation task on image

<img src="https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/assets/segmentation.png" >

Requirements

Python 3.6+ YOLOv8 Streamlit

pip install ultralytics streamlit pytube

Installation

Usage

  • Run the app with the following command: streamlit run app.py
  • The app should open in a new browser window.

ML Model Config

  • Select task (Detection, Segmentation)
  • Select model confidence
  • Use the slider to adjust the confidence threshold (25-100) for the model.

One the model config is done, select a source.

Detection on images

  • The default image with its objects-detected image is displayed on the main page.
  • Select a source. (radio button selection Image).
  • Upload an image by clicking on the "Browse files" button.
  • Click the "Detect Objects" button to run the object detection algorithm on the uploaded image with the selected confidence threshold.
  • The resulting image with objects detected will be displayed on the page. Click the "Download Image" button to download the image.("If save image to download" is selected)

Detection in Videos

  • Create a folder with name videos in the same directory
  • Dump your videos in this folder
  • In settings.py edit the following lines.
# video VIDEO_DIR = ROOT / 'videos' # After creating the videos folder # Suppose you have four videos inside videos folder # Edit the name of video_1, 2, 3, 4 (with the names of your video files) VIDEO_1_PATH = VIDEO_DIR / 'video_1.mp4' VIDEO_2_PATH = VIDEO_DIR / 'video_2.mp4' VIDEO_3_PATH = VIDEO_DIR / 'video_3.mp4' VIDEO_4_PATH = VIDEO_DIR / 'video_4.mp4' # Edit the same names here also. VIDEOS_DICT = { 'video_1': VIDEO_1_PATH, 'video_2': VIDEO_2_PATH, 'video_3': VIDEO_3_PATH, 'video_4': VIDEO_4_PATH, } # Your videos will start appearing inside streamlit webapp 'Choose a video'.
  • Click on Detect Video Objects button and the selected task (detection/segmentation) will start on the selected video.

Detection on RTSP

  • Select the RTSP stream button
  • Enter the rtsp url inside the textbox and hit Detect Objects button

Detection on YouTube Video URL

  • Select the source as YouTube
  • Copy paste the url inside the text box.
  • The detection/segmentation task will start on the YouTube video url

https://user-images.githubusercontent.com/104087274/226178296-684ad72a-fe5f-4589-b668-95c835cd8d8a.mov

Acknowledgements

This app uses YOLOv8 for object detection algorithm and Streamlit library for the user interface.

Disclaimer

This project is intended as a learning exercise and demonstration of integrating various technologies, including:

  • Streamlit
  • YoloV8
  • Object-Detection on Images And Live Video Streams
  • Python-OpenCV

Please note that this application is not designed or tested for production use. It serves as an educational resource and a showcase of technology integration rather than a production-ready web application.

Contributors and users are welcome to explore, learn from, and build upon this project for educational purposes.

Hit star ⭐ if you like this repo!!!

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多