Awesome-LLM4IE-Papers

Awesome-LLM4IE-Papers

大型语言模型驱动的信息抽取研究进展综述

Awesome-LLM4IE-Papers项目收录了大型语言模型在信息抽取领域的前沿论文。涵盖命名实体识别、关系抽取和事件抽取等任务,以及监督微调、少样本和零样本学习等技术。项目还包括特定领域应用、评估分析和相关工具。通过持续更新,为研究人员提供LLM驱动的信息抽取最新进展,促进该领域的学术交流与技术创新。

LLM信息抽取命名实体识别关系抽取事件抽取Github开源项目

Awesome-LLM4IE-Papers

Awesome papers about generative Information extraction using LLMs

<p align="center" width="80%"> <img src="./image/intro.png" style="width: 50%"> </p>

The organization of papers is discussed in our survey: Large Language Models for Generative Information Extraction: A Survey.

If you find any relevant academic papers that have not been included in our research, please submit a request for an update. We welcome contributions from everyone.

If any suggestions or mistakes, please feel free to let us know via email at derongxu@mail.ustc.edu.cn and chenweicw@mail.ustc.edu.cn. We appreciate your feedback and help in improving our work.

If you find our survey useful for your research, please cite the following paper:

@misc{xu2023large,
    title={Large Language Models for Generative Information Extraction: A Survey}, 
    author={Derong Xu and Wei Chen and Wenjun Peng and Chao Zhang and Tong Xu and Xiangyu Zhao and Xian Wu and Yefeng Zheng and Enhong Chen},
    year={2023},
    eprint={2312.17617},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

📒 Table of Contents

💡 News

  • Update Logs
    • The details can be find in <code>./update_new_papers_list</code>.
    • 2024/06/06 Add 41 papers
    • 2024/03/30 Add 27 papers
    • 2024/03/29 Add 20 papers

Information Extraction tasks

A taxonomy by various tasks.

Named Entity Recognition

Models targeting only ner tasks.

Entity Typing

PaperVenueDateCode
Calibrated Seq2seq Models for Efficient and Generalizable Ultra-fine Entity TypingEMNLP Findings2023-12GitHub
Generative Entity Typing with Curriculum LearningEMNLP2022-12GitHub

Entity Identification & Typing

PaperVenueDateCode
RT: a Retrieving and Chain-of-Thought framework for few-shot medical named entity recognitionOthers2024-05GitHub
P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language ModelsArxiv2024-05
Astro-NER -- Astronomy Named Entity Recognition: Is GPT a Good Domain Expert Annotator?Arxiv2024-05
Know-Adapter: Towards Knowledge-Aware Parameter-Efficient Transfer Learning for Few-shot Named Entity RecognitionCOLING2024-05
Astronomical Knowledge Entity Extraction in Astrophysics Journal Articles via Large Language ModelsOthers2024-04
LLMs as Bridges: Reformulating Grounded Multimodal Named Entity RecognitionACL Findings2024-05GitHub
LTNER: Large Language Model Tagging for Named Entity Recognition with Contextualized Entity MarkingArxiv2024-04GitHub
ToNER: Type-oriented Named Entity Recognition with Generative Language ModelCOLING2024-04
Enhancing Software-Related Information Extraction via Single-Choice Question Answering with Large Language ModelsOthers2024-04
Knowledge-Enriched Prompt for Low-Resource Named Entity RecognitionTALLIP2024-04
VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity RecognitionArxiv2024-04GitHub
LLMs in Biomedicine: A study on clinical Named Entity RecognitionArxiv2024-04
Out of Sesame Street: A Study of Portuguese Legal Named Entity Recognition Through In-Context LearningResearchGate2024-04
Mining experimental data from Materials Science literature with Large Language Models: an evaluation studyArxiv2024-04GitHub
LinkNER: Linking Local Named Entity Recognition Models to Large Language Models using UncertaintyWWW2024
Self-Improving for Zero-Shot Named Entity Recognition with Large Language ModelsNAACL2024GitHub
MetaIE: Distilling a Meta Model from LLM for All Kinds of Information Extraction TasksArxiv2024-03GitHub
On-the-fly Definition Augmentation of LLMs for Biomedical NERNAACL2024-03GitHub
Distilling Named Entity Recognition Models for Endangered Species from Large Language ModelsArxiv2024-03
CHisIEC: An Information Extraction Corpus for Ancient Chinese HistoryCOLING2024-03GitHub
Augmenting NER Datasets with LLMs: Towards Automated and Refined AnnotationArxiv2024-03
ConsistNER: Towards Instructive NER Demonstrations for LLMs with the Consistency of Ontology and ContextAAAI2024-03
Embedded Named Entity Recognition using Probing ClassifiersArxiv2024-03GitHub
ProgGen: Generating Named Entity Recognition Datasets Step-by-step with Self-Reflexive Large Language ModelsArxiv2024-03GitHub
In-Context Learning for Few-Shot Nested Named Entity RecognitionArxiv2024-02
LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named Entity RecognitionArxiv2024-02
Structured information extraction from scientific text with large language modelsNature Communications2024-02GitHub
Rethinking Negative Instances for Generative Named Entity RecognitionArxiv2024-02GitHub
NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated DataArxiv2024-02
VerifiNER: Verification-augmented NER via Knowledge-grounded Reasoning with Large Language ModelsArxiv2024-02
A Simple but Effective Approach to Improve Structured Language Model Output for Information ExtractionArxiv2024-02
PaDeLLM-NER: Parallel Decoding in Large Language Models for Named Entity RecognitionArxiv2024-02
Small Language Model Is a Good Guide for Large Language Model in Chinese Entity Relation ExtractionArxiv2024-02
C-ICL: Contrastive In-context Learning for Information ExtractionArxiv2024-02
UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity RecognitionICLR2024-01GitHub
Improving Large Language Models for Clinical Named Entity Recognition via Prompt EngineeringArxiv2024-01GitHub
2INER: Instructive and In-Context Learning on Few-Shot Named Entity RecognitionEMNLP Findings2023-12
In-context Learning for Few-shot Multimodal Named Entity RecognitionEMNLP Findings2023-12
Large Language Model Is Not a Good Few-shot Information Extractor, but a Good Reranker for Hard Samples!EMNLP Findings2023-12GitHub
Learning to Rank Context for Named Entity Recognition Using a Synthetic DatasetEMNLP2023-12GitHub
LLMaAA: Making Large Language Models as Active AnnotatorsEMNLP Findings2023-12GitHub
Prompting ChatGPT in MNER: Enhanced Multimodal Named Entity Recognition with Auxiliary Refined KnowledgeEMNLP Findings2023-12GitHub
GLiNER: Generalist Model for Named Entity Recognition using Bidirectional TransformerArxiv2023-11GitHub
GPT Struct Me: Probing GPT Models on Narrative Entity ExtractionWI-IAT2023-10GitHub
GPT-NER: Named Entity Recognition via Large Language ModelsArxiv2023-10GitHub
Prompt-NER: Zero-shot Named Entity Recognition in Astronomy Literature via Large Language ModelsArxiv2023-10
Inspire the Large Language Model by External Knowledge on BioMedical Named Entity RecognitionArxiv2023-09
One Model for All Domains: Collaborative Domain-Prefx Tuning for Cross-Domain NERIJCAI2023-09GitHub
Chain-of-Thought Prompt Distillation for Multimodal Named Entity Recognition and Multimodal Relation ExtractionArxiv2023-08
Learning In-context Learning for Named Entity Recognition ACL2023-07GitHub
Debiasing Generative Named Entity Recognition by Calibrating Sequence LikelihoodACL Short2023-07
Entity-to-Text based Data Augmentation for various Named Entity Recognition TasksACL Findings2023-07
Large Language Models as Instructors: A Study on Multilingual Clinical Entity ExtractionBioNLP2023-07GitHub
NAG-NER: a Unified Non-Autoregressive Generation Framework for Various NER TasksACL Industry2023-07
Unified Named Entity Recognition as Multi-Label Sequence GenerationIJCNN2023-06
PromptNER : Prompting For Named Entity RecognitionArxiv2023-06

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多