Recently, tool learning with large language models(LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
This is the collection of papers related to tool learning with LLMs. These papers are organized according to our survey paper "Tool Learning with Large Language Models: A Survey".
中文: We have noticed that PaperAgent and 旺知识 have provided a brief and a comprehensive introduction in Chinese, respectively. We greatly appreciate their assistance.
Please feel free to contact us if you have any questions or suggestions!
:tada::+1: Please feel free to open an issue or make a pull request! :tada::+1:
If you find our work helps your research, please kindly cite our paper:
@article{qu2024toolsurvey, author={Qu, Changle and Dai, Sunhao and Wei, Xiaochi and Cai, Hengyi and Wang, Shuaiqiang and Yin, Dawei and Xu, Jun and Wen, Ji-Rong}, title={Tool Learning with Large Language Models: A Survey}, journal={arXiv preprint arXiv:2405.17935}, year={2024} }
Recently, tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems. Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization, posing barriers to entry for newcomers. This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs. In this survey, we focus on reviewing existing literature from the two primary aspects (1) why tool learning is beneficial and (2) how tool learning is implemented, enabling a comprehensive understanding of tool learning with LLMs. We first explore the “why” by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects. In terms of “how”, we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow: task planning, tool selection, tool calling, and response generation. Additionally, we provide a detailed summary of existing benchmarks and evaluation methods, categorizing them according to their relevance to different stages. Finally, we discuss current challenges and outline potential future directions, aiming to inspire both researchers and industrial developers to further explore this emerging and promising area.
Knowledge Acquisition.
Search Engine
Internet-Augmented Dialogue Generation, ACL 2022. [Paper]
WebGPT: Browser-assisted question-answering with human feedback, Preprint 2021. [Paper]
Internet-augmented language models through few-shot prompting for open-domain question answering, Preprint 2022. [Paper]
REPLUG: Retrieval-Augmented Black-Box Language Models, Preprint 2023. [Paper]
Toolformer: Language Models Can Teach Themselves to Use Tools, NeurIPS 2023. [Paper]
ART: Automatic multi-step reasoning and tool-use for large language models, Preprint 2023. [Paper]
ToolCoder: Teach Code Generation Models to use API search tools, Preprint 2023. [Paper]
CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing, ICLR 2024. [Paper]
Database & Knowledge Graph
Lamda: Language models for dialog applications, Preprint 2022. [Paper]
Gorilla: Large Language Model Connected with Massive APIs, Preprint 2023. [Paper]
ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings, NeurIPS 2023. [Paper]
ToolQA: A Dataset for LLM Question Answering with External Tools, NeurIPS 2023. [Paper]
Syntax Error-Free and Generalizable Tool Use for LLMs via Finite-State Decoding, NeurIPS 2023. [Paper]
Middleware for LLMs: Tools are Instrumental for Language Agents in Complex Environments, Preprint 2024. [Paper]
Weather or Map
On the Tool Manipulation Capability of Open-source Large Language Models, NeurIPS 2023. [Paper]
ToolAlpaca: Generalized Tool Learning for Language Models with 3000 Simulated Cases, Preprint 2023. [Paper]
Tool Learning with Foundation Models, Preprint 2023. [Paper]
Expertise Enhancement.
Mathematical Tools
Training verifiers to solve math word problems, Preprint 2021. [Paper]
MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning, Preprint 2021. [Paper]
Chaining Simultaneous Thoughts for Numerical Reasoning, EMNLP 2022. [Paper]
Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought through Interaction with Symbolic Systems, EMNLP 2023. [Paper]
Solving math word problems by combining language models with symbolic solvers, NeurIPS 2023. [Paper]
Evaluating and improving tool-augmented computation-intensive math reasoning, NeurIPS 2023. [Paper]
ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving, ICLR 2024. [Paper]
MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning, Preprint 2024. [Paper]
Calc-CMU at SemEval-2024 Task 7: Pre-Calc -- Learning to Use the Calculator Improves Numeracy in Language Models, NAACL 2024. [Paper]
MathViz-E: A Case-study in Domain-Specialized Tool-Using Agents, Preprint 2024. [Paper]
Python Interpreter
Pal: Program-aided language models, ICML 2023. [Paper]
Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks, TMLR 2023. [Paper]
Fact-Checking Complex Claims with Program-Guided Reasoning, ACL 2023. [Paper]
Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models, NeurIPS 2023. [Paper]
LeTI: Learning to Generate from Textual Interactions, NAACL 2024. [Paper]
Mint: Evaluating llms in multi-turn interaction with tools and language feedback, ICLR 2024. [Paper]
Executable Code Actions Elicit Better LLM Agents, ICML 2024. [Paper]
CodeNav: Beyond tool-use to using real-world codebases with LLM agents, Preprint 2024. [Paper]
APPL: A Prompt Programming Language for Harmonious Integration of Programs and Large Language Model Prompts, Preprint 2024. [Paper]
BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions, Preprint 2024. [Paper]
CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges, ACL 2024. [Paper]
Others
Chemical: MultiTool-CoT: GPT-3 Can Use Multiple External Tools with Chain of Thought Prompting, ACL 2023. [Paper]
ChemCrow: Augmenting large-language models with chemistry tools, Nature Machine Intelligence 2024. [Paper]
A REVIEW OF LARGE LANGUAGE MODELS AND AUTONOMOUS AGENTS IN CHEMISTRY, Preprint 2024. [Paper]
Biomedical: GeneGPT: Augmenting Large Language Models with Domain Tools for Improved Access to Biomedical Information, ISMB 2024. [Paper]
Financial: Equipping Language Models with Tool Use Capability for Tabular Data Analysis in Finance, EACL 2024. [Paper]
Financial: Simulating Financial Market via Large Language Model based Agents, Preprint 2024. [Paper]
Medical: AgentMD: Empowering Language Agents for Risk Prediction with Large-Scale Clinical Tool Learning, Preprint 2024. [Paper]
MMedAgent: Learning to Use Medical Tools with Multi-modal Agent, Preprint 2024. [Paper]
Recommendation: Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning, SIGIR 2024. [Paper]
Gas Turbines: DOMAIN-SPECIFIC ReAct FOR PHYSICS-INTEGRATED ITERATIVE MODELING: A CASE STUDY OF LLM AGENTS FOR GAS PATH ANALYSIS OF GAS TURBINES, Preprint 2024. [Paper]
WORLDAPIS: The World Is Worth How Many APIs? A Thought Experiment, ACL 2024 Workshop. [Paper]
Automation and Efficiency.
Schedule Tools
ToolQA: A Dataset for LLM Question Answering with External Tools, NeurIPS 2023. [Paper]
Set Reminders
ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs, ICLR 2024. [Paper]
Filter Emails
ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs, ICLR 2024. [Paper]
Project Management
ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs, ICLR 2024. [Paper]
Online Shopping Assistants
WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents, NeurIPS 2022. [Paper]
Interaction Enhancement.
Multi-modal Tools
Vipergpt: Visual inference via python execution for reasoning, ICCV 2023. [Paper]
MM-REACT: Prompting ChatGPT for Multimodal Reasoning and Action, Preprint 2023. [Paper]
InternGPT: Solving Vision-Centric Tasks by Interacting with ChatGPT Beyond Language, Preprint 2023. [Paper]
AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn, Preprint 2023. [Paper]
CLOVA: A closed-loop visual assistant with tool usage and update, CVPR 2024. [Paper]
DiffAgent: Fast and Accurate Text-to-Image API Selection with Large Language Model, CVPR 2024. [Paper]
MLLM-Tool: A Multimodal Large Language Model For Tool Agent Learning, Preprint 2024. [Paper]
m&m's: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks, Preprint 2024. [Paper]
From the Least to the Most: Building a Plug-and-Play Visual Reasoner via Data Synthesis, Preprint 2024. [Paper]
Machine Translator
Toolformer: Language Models Can Teach Themselves to Use Tools, NeurIPS 2023. [Paper]
Tool Learning with Foundation Models, Preprint 2023. [Paper]
Natural Language Processing Tools
HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face, NeurIPS 2023. [Paper]
GitAgent: Facilitating Autonomous Agent with GitHub by Tool Extension, Preprint 2023. [Paper]


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

