awesome-AI-for-time-series-papers

awesome-AI-for-time-series-papers

时间序列分析领域的人工智能前沿研究与资源集锦

这是一个全面收录人工智能在时间序列分析(AI4TS)领域最新研究成果的资源库。项目汇集了顶级AI会议和期刊发表的论文、教程和综述,涉及时间序列、时空数据、事件数据等多个方面。资源库实时更新NeurIPS、ICML、KDD等重要会议的相关论文,为AI4TS领域的研究人员和工程师提供了丰富且及时的学术参考。

时间序列AI机器学习深度学习数据挖掘Github开源项目

AI for Time Series (AI4TS) Papers, Tutorials, and Surveys

Awesome PRs Welcome Stars Visits Badge

<!-- ![Forks](https://img.shields.io/github/forks/qingsongedu/awesome-AI-for-time-series-papers) -->

A professionally curated list of papers (with available code), tutorials, and surveys on recent AI for Time Series Analysis (AI4TS), including Time Series, Spatio-Temporal Data, Event Data, Sequence Data, Temporal Point Processes, etc., at the Top AI Conferences and Journals, which is updated ASAP (the earliest time) once the accepted papers are announced in the corresponding top AI conferences/journals. Hope this list would be helpful for researchers and engineers who are interested in AI for Time Series Analysis.

The top conferences including:

  • Machine Learning: NeurIPS, ICML, ICLR
  • Data Mining: KDD, WWW
  • Artificial Intelligence: AAAI, IJCAI
  • Data Management: SIGMOD, VLDB, ICDE
  • Misc (selected): AISTAT, CIKM, ICDM, WSDM, SIGIR, ICASSP, CVPR, ICCV, etc.

The top journals including (mainly for survey papers): CACM, PIEEE, TPAMI, TKDE, TNNLS, TITS, TIST, SPM, JMLR, JAIR, CSUR, DMKD, KAIS, IJF, arXiv(selected), etc.

If you find any missed resources (paper/code) or errors, please feel free to open an issue or make a pull request.

For general Recent AI Advances: Tutorials and Surveys in various areas (DL, ML, DM, CV, NLP, Speech, etc.) at the Top AI Conferences and Journals, please check This Repo.

Main Recent Update Note

  • [Mar. 04, 2024] Add papers accepted by ICLR'24, AAAI'24, WWW'24!
  • [Jul. 05, 2023] Add papers accepted by KDD'23!
  • [Jun. 20, 2023] Add papers accepted by ICML'23!
  • [Feb. 07, 2023] Add papers accepted by ICLR'23 and AAAI'23!
  • [Sep. 18, 2022] Add papers accepted by NeurIPS'22!
  • [Jul. 14, 2022] Add papers accepted by KDD'22!
  • [Jun. 02, 2022] Add papers accepted by ICML'22, ICLR'22, AAAI'22, IJCAI'22!

Table of Contents

AI4TS Tutorials and Surveys

AI4TS Tutorials

  • Out-of-Distribution Generalization in Time Series, in AAAI 2024. [Link]
  • Robust Time Series Analysis and Applications: An Interdisciplinary Approach, in ICDM 2023. [Link]
  • Robust Time Series Analysis and Applications: An Industrial Perspective, in KDD 2022. [Link]
  • Time Series in Healthcare: Challenges and Solutions, in AAAI 2022. [Link]
  • Time Series Anomaly Detection: Tools, Techniques and Tricks, in DASFAA 2022. [Link]
  • Modern Aspects of Big Time Series Forecasting, in IJCAI 2021. [Link]
  • Explainable AI for Societal Event Predictions: Foundations, Methods, and Applications, in AAAI 2021. [Link]
  • Physics-Guided AI for Large-Scale Spatiotemporal Data, in KDD 2021. [Link]
  • Deep Learning for Anomaly Detection, in KDD & WSDM 2020. [Link1] [Link2] [Link3]
  • Building Forecasting Solutions Using Open-Source and Azure Machine Learning, in KDD 2020. [Link]
  • Interpreting and Explaining Deep Neural Networks: A Perspective on Time Series Data, KDD 2020. [Link]
  • Forecasting Big Time Series: Theory and Practice, KDD 2019. [Link]
  • Spatio-Temporal Event Forecasting and Precursor Identification, KDD 2019. [Link]
  • Modeling and Applications for Temporal Point Processes, KDD 2019. [Link1] [Link2]

AI4TS Surveys

General Time Series Survey

  • What Can Large Language Models Tell Us about Time Series Analysis, in arXiv 2024. [paper]
  • Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook, in arXiv 2023. [paper] [Website]
  • Deep Learning for Multivariate Time Series Imputation: A Survey, in arXiv 2024. [paper] [Website]
  • Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects, in arXiv 2023. [paper] [Website]
  • A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection, in arXiv 2023. [paper] [Website]
  • Transformers in Time Series: A Survey, in IJCAI 2023. [paper] [GitHub Repo]
  • Time series data augmentation for deep learning: a survey, in IJCAI 2021. [paper]
  • Neural temporal point processes: a review, in IJCAI 2021. [paper]
  • Causal inference for time series analysis: problems, methods and evaluation, in KAIS 2022. [paper]
  • Survey and Evaluation of Causal Discovery Methods for Time Series, in JAIR 2022. [paper]
  • Deep learning for spatio-temporal data mining: A survey, in TKDE 2020. [paper]
  • Generative Adversarial Networks for Spatio-temporal Data: A Survey, in TIST 2022. [paper]
  • Spatio-Temporal Data Mining: A Survey of Problems and Methods, in CSUR 2018. [paper]
  • A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series, in NeurIPS Workshop 2020. [paper]
  • Count Time-Series Analysis: A signal processing perspective, in SPM 2019. [paper]
  • Wavelet transform application for/in non-stationary time-series analysis: a review, in Applied Sciences 2019. [paper]
  • Granger Causality: A Review and Recent Advances, in Annual Review of Statistics and Its Application 2014. [paper]
  • A Review of Deep Learning Methods for Irregularly Sampled Medical Time Series Data, in arXiv 2020. [paper]
  • Beyond Just Vision: A Review on Self-Supervised Representation Learning on Multimodal and Temporal Data, in arXiv 2022. [paper]
  • A Survey on Time-Series Pre-Trained Models, in arXiv 2023. [paper] [link]
  • Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects, in arXiv 2023. [paper] [Website]
  • A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection, in arXiv 2023. [paper] [Website]

Time Series Forecasting Survey

  • Forecasting: theory and practice, in IJF 2022. [paper]
  • Time-series forecasting with deep learning: a survey, in Philosophical Transactions of the Royal Society A 2021. [paper]
  • Deep Learning on Traffic Prediction: Methods, Analysis, and Future Directions, in TITS 2022. [paper]
  • Event prediction in the big data era: A systematic survey, in CSUR 2022. [paper]
  • A brief history of forecasting competitions, in IJF 2020. [paper]
  • Neural forecasting: Introduction and literature overview, in arXiv 2020. [paper]
  • Probabilistic forecasting, in Annual Review of Statistics and Its Application 2014. [paper]

Time Series Anomaly Detection Survey

  • A review on outlier/anomaly detection in time series data, in CSUR 2021. [paper]
  • Anomaly detection for IoT time-series data: A survey,

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多