pybind11

pybind11

C++11 和 Python 的高效绑定库

pybind11 是一个轻量级的仅头文件库,用于 C++11 和 Python 间的无缝绑定。它可将 C++ 类型暴露给 Python,也支持反向操作,主要用于为现有 C++ 代码创建 Python 接口。该库具有简洁语法、低依赖性和高性能,支持函数重载、异常处理和继承等多种 C++ 特性。pybind11 还集成了 NumPy 支持,可绑定 lambda 函数,兼容 Python 3.8+ 和 PyPy3。

pybind11C++Python绑定库跨语言开发Github开源项目

.. figure:: https://github.com/pybind/pybind11/raw/master/docs/pybind11-logo.png :alt: pybind11 logo

pybind11 — Seamless operability between C++11 and Python

|Latest Documentation Status| |Stable Documentation Status| |Gitter chat| |GitHub Discussions| |CI| |Build status|

|Repology| |PyPI package| |Conda-forge| |Python Versions|

Setuptools example <https://github.com/pybind/python_example>_ • Scikit-build example <https://github.com/pybind/scikit_build_example>_ • CMake example <https://github.com/pybind/cmake_example>_

.. start

pybind11 is a lightweight header-only library that exposes C++ types in Python and vice versa, mainly to create Python bindings of existing C++ code. Its goals and syntax are similar to the excellent Boost.Python <http://www.boost.org/doc/libs/1_58_0/libs/python/doc/>_ library by David Abrahams: to minimize boilerplate code in traditional extension modules by inferring type information using compile-time introspection.

The main issue with Boost.Python—and the reason for creating such a similar project—is Boost. Boost is an enormously large and complex suite of utility libraries that works with almost every C++ compiler in existence. This compatibility has its cost: arcane template tricks and workarounds are necessary to support the oldest and buggiest of compiler specimens. Now that C++11-compatible compilers are widely available, this heavy machinery has become an excessively large and unnecessary dependency.

Think of this library as a tiny self-contained version of Boost.Python with everything stripped away that isn't relevant for binding generation. Without comments, the core header files only require ~4K lines of code and depend on Python (3.8+, or PyPy) and the C++ standard library. This compact implementation was possible thanks to some C++11 language features (specifically: tuples, lambda functions and variadic templates). Since its creation, this library has grown beyond Boost.Python in many ways, leading to dramatically simpler binding code in many common situations.

Tutorial and reference documentation is provided at pybind11.readthedocs.io <https://pybind11.readthedocs.io/en/latest>. A PDF version of the manual is available here <https://pybind11.readthedocs.io/_/downloads/en/latest/pdf/>. And the source code is always available at github.com/pybind/pybind11 <https://github.com/pybind/pybind11>_.

Core features

pybind11 can map the following core C++ features to Python:

  • Functions accepting and returning custom data structures per value, reference, or pointer
  • Instance methods and static methods
  • Overloaded functions
  • Instance attributes and static attributes
  • Arbitrary exception types
  • Enumerations
  • Callbacks
  • Iterators and ranges
  • Custom operators
  • Single and multiple inheritance
  • STL data structures
  • Smart pointers with reference counting like std::shared_ptr
  • Internal references with correct reference counting
  • C++ classes with virtual (and pure virtual) methods can be extended in Python
  • Integrated NumPy support (NumPy 2 requires pybind11 2.12+)

Goodies

In addition to the core functionality, pybind11 provides some extra goodies:

  • Python 3.8+, and PyPy3 7.3 are supported with an implementation-agnostic interface (pybind11 2.9 was the last version to support Python 2 and 3.5).

  • It is possible to bind C++11 lambda functions with captured variables. The lambda capture data is stored inside the resulting Python function object.

  • pybind11 uses C++11 move constructors and move assignment operators whenever possible to efficiently transfer custom data types.

  • It's easy to expose the internal storage of custom data types through Pythons' buffer protocols. This is handy e.g. for fast conversion between C++ matrix classes like Eigen and NumPy without expensive copy operations.

  • pybind11 can automatically vectorize functions so that they are transparently applied to all entries of one or more NumPy array arguments.

  • Python's slice-based access and assignment operations can be supported with just a few lines of code.

  • Everything is contained in just a few header files; there is no need to link against any additional libraries.

  • Binaries are generally smaller by a factor of at least 2 compared to equivalent bindings generated by Boost.Python. A recent pybind11 conversion of PyRosetta, an enormous Boost.Python binding project, reported <https://graylab.jhu.edu/Sergey/2016.RosettaCon/PyRosetta-4.pdf>_ a binary size reduction of 5.4x and compile time reduction by 5.8x.

  • Function signatures are precomputed at compile time (using constexpr), leading to smaller binaries.

  • With little extra effort, C++ types can be pickled and unpickled similar to regular Python objects.

Supported compilers

  1. Clang/LLVM 3.3 or newer (for Apple Xcode's clang, this is 5.0.0 or newer)
  2. GCC 4.8 or newer
  3. Microsoft Visual Studio 2017 or newer
  4. Intel classic C++ compiler 18 or newer (ICC 20.2 tested in CI)
  5. Cygwin/GCC (previously tested on 2.5.1)
  6. NVCC (CUDA 11.0 tested in CI)
  7. NVIDIA PGI (20.9 tested in CI)

About

This project was created by Wenzel Jakob <http://rgl.epfl.ch/people/wjakob>_. Significant features and/or improvements to the code were contributed by Jonas Adler, Lori A. Burns, Sylvain Corlay, Eric Cousineau, Aaron Gokaslan, Ralf Grosse-Kunstleve, Trent Houliston, Axel Huebl, @hulucc, Yannick Jadoul, Sergey Lyskov, Johan Mabille, Tomasz Miąsko, Dean Moldovan, Ben Pritchard, Jason Rhinelander, Boris Schäling, Pim Schellart, Henry Schreiner, Ivan Smirnov, Boris Staletic, and Patrick Stewart.

We thank Google for a generous financial contribution to the continuous integration infrastructure used by this project.

Contributing


See the `contributing
guide <https://github.com/pybind/pybind11/blob/master/.github/CONTRIBUTING.md>`_
for information on building and contributing to pybind11.

License
~~~~~~~

pybind11 is provided under a BSD-style license that can be found in the
`LICENSE <https://github.com/pybind/pybind11/blob/master/LICENSE>`_
file. By using, distributing, or contributing to this project, you agree
to the terms and conditions of this license.

.. |Latest Documentation Status| image:: https://readthedocs.org/projects/pybind11/badge?version=latest
   :target: http://pybind11.readthedocs.org/en/latest
.. |Stable Documentation Status| image:: https://img.shields.io/badge/docs-stable-blue.svg
   :target: http://pybind11.readthedocs.org/en/stable
.. |Gitter chat| image:: https://img.shields.io/gitter/room/gitterHQ/gitter.svg
   :target: https://gitter.im/pybind/Lobby
.. |CI| image:: https://github.com/pybind/pybind11/workflows/CI/badge.svg
   :target: https://github.com/pybind/pybind11/actions
.. |Build status| image:: https://ci.appveyor.com/api/projects/status/riaj54pn4h08xy40?svg=true
   :target: https://ci.appveyor.com/project/wjakob/pybind11
.. |PyPI package| image:: https://img.shields.io/pypi/v/pybind11.svg
   :target: https://pypi.org/project/pybind11/
.. |Conda-forge| image:: https://img.shields.io/conda/vn/conda-forge/pybind11.svg
   :target: https://github.com/conda-forge/pybind11-feedstock
.. |Repology| image:: https://repology.org/badge/latest-versions/python:pybind11.svg
   :target: https://repology.org/project/python:pybind11/versions
.. |Python Versions| image:: https://img.shields.io/pypi/pyversions/pybind11.svg
   :target: https://pypi.org/project/pybind11/
.. |GitHub Discussions| image:: https://img.shields.io/static/v1?label=Discussions&message=Ask&color=blue&logo=github
   :target: https://github.com/pybind/pybind11/discussions

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多