EconML

EconML

Python因果推断库 基于机器学习的异质性效应估计

EconML是一个Python库,结合机器学习和计量经济学方法,用于从观测数据中估计异质性治疗效应。该库支持多种建模技术,可捕捉效应异质性并保持因果解释,同时提供置信区间。EconML基于标准Python数据科学生态系统构建,为复杂的因果推断问题提供统一的API和自动化解决方案。

EconML因果推断机器学习异质性处理效应PythonGithub开源项目

Build status PyPI version PyPI wheel Supported Python versions

<h1> <a href="https://econml.azurewebsites.net/"> <img src="doc/econml-logo-icon.png" width="80px" align="left" style="margin-right: 10px;", alt="econml-logo"> </a> EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation </h1>

EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML:

  • Implement recent techniques in the literature at the intersection of econometrics and machine learning
  • Maintain flexibility in modeling the effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while preserving the causal interpretation of the learned model and often offering valid confidence intervals
  • Use a unified API
  • Build on standard Python packages for Machine Learning and Data Analysis

One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in X, W that simultaneously has an effect on both T and Y), while others assume access to an instrument Z (i.e. an observed variable Z that has an effect on the treatment T but no direct effect on the outcome Y). Most methods provide confidence intervals and inference results.

For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/.

For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/

<details> <summary><strong><em>Table of Contents</em></strong></summary> </details>

News

If you'd like to contribute to this project, see the Help Wanted section below.

July 3, 2024: Release v0.15.1, see release notes here

<details><summary>Previous releases</summary>

February 12, 2024: Release v0.15.0, see release notes here

November 11, 2023: Release v0.15.0b1, see release notes here

May 19, 2023: Release v0.14.1, see release notes here

November 16, 2022: Release v0.14.0, see release notes here

June 17, 2022: Release v0.13.1, see release notes here

January 31, 2022: Release v0.13.0, see release notes here

August 13, 2021: Release v0.12.0, see release notes here

August 5, 2021: Release v0.12.0b6, see release notes here

August 3, 2021: Release v0.12.0b5, see release notes here

July 9, 2021: Release v0.12.0b4, see release notes here

June 25, 2021: Release v0.12.0b3, see release notes here

June 18, 2021: Release v0.12.0b2, see release notes here

June 7, 2021: Release v0.12.0b1, see release notes here

May 18, 2021: Release v0.11.1, see release notes here

May 8, 2021: Release v0.11.0, see release notes here

March 22, 2021: Release v0.10.0, see release notes here

March 11, 2021: Release v0.9.2, see release notes here

March 3, 2021: Release v0.9.1, see release notes here

February 20, 2021: Release v0.9.0, see release notes here

January 20, 2021: Release v0.9.0b1, see release notes here

November 20, 2020: Release v0.8.1, see release notes here

November 18, 2020: Release v0.8.0, see release notes here

September 4, 2020: Release v0.8.0b1, see release notes here

March 6, 2020: Release v0.7.0, see release notes here

February 18, 2020: Release v0.7.0b1, see release notes here

January 10, 2020: Release v0.6.1, see release notes here

December 6, 2019: Release v0.6, see release notes here

November 21, 2019: Release v0.5, see release notes here.

June 3, 2019: Release v0.4, see release notes here.

May 3, 2019: Release v0.3, see release notes here.

April 10, 2019: Release v0.2, see release notes here.

March 6, 2019: Release v0.1, welcome to have a try and provide feedback.

</details>

Getting Started

Installation

Install the latest release from PyPI:

pip install econml

To install from source, see For Developers section below.

Usage Examples

Estimation Methods

<details> <summary>Double Machine Learning (aka RLearner) (click to expand)</summary>
  • Linear final stage
from econml.dml import LinearDML from sklearn.linear_model import LassoCV from econml.inference import BootstrapInference est = LinearDML(model_y=LassoCV(), model_t=LassoCV()) ### Estimate with OLS confidence intervals est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals ### Estimate with bootstrap confidence intervals est.fit(Y, T, X=X, W=W, inference='bootstrap') # with default bootstrap parameters est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100)) # or customized lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals
  • Sparse linear final stage
from econml.dml import SparseLinearDML from sklearn.linear_model import LassoCV est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV()) est.fit(Y, T, X=X, W=W) # X -> high dimensional features treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso
  • Generic Machine Learning last stage
from econml.dml import NonParamDML from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier est = NonParamDML(model_y=RandomForestRegressor(), model_t=RandomForestClassifier(), model_final=RandomForestRegressor(), discrete_treatment=True) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test)
</details> <details> <summary>Dynamic Double Machine Learning (click to expand)</summary>
from econml.panel.dml import DynamicDML # Use defaults est = DynamicDML() # Or specify hyperparameters est = DynamicDML(model_y=LassoCV(cv=3), model_t=LassoCV(cv=3), cv=3) est.fit(Y, T, X=X, W=None, groups=groups, inference="auto") # Effects treatment_effects = est.effect(X_test) # Confidence intervals lb, ub = est.effect_interval(X_test, alpha=0.05)
</details> <details> <summary>Causal Forests (click to expand)</summary>
from econml.dml import CausalForestDML from sklearn.linear_model import LassoCV # Use defaults est = CausalForestDML() # Or specify hyperparameters est = CausalForestDML(criterion='het', n_estimators=500, min_samples_leaf=10, max_depth=10, max_samples=0.5, discrete_treatment=False, model_t=LassoCV(), model_y=LassoCV()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) # Confidence intervals via Bootstrap-of-Little-Bags for forests lb, ub = est.effect_interval(X_test, alpha=0.05)
</details> <details> <summary>Orthogonal Random Forests (click to expand)</summary>
from econml.orf import DMLOrthoForest, DROrthoForest from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV # Use defaults est = DMLOrthoForest() est = DROrthoForest() # Or specify hyperparameters est = DMLOrthoForest(n_trees=500, min_leaf_size=10, max_depth=10, subsample_ratio=0.7, lambda_reg=0.01, discrete_treatment=False, model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01), model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3)) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) # Confidence intervals via Bootstrap-of-Little-Bags for forests lb, ub = est.effect_interval(X_test, alpha=0.05)
</details> <details> <summary>Meta-Learners (click to expand)</summary>
  • XLearner
from econml.metalearners import XLearner from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor est = XLearner(models=GradientBoostingRegressor(), propensity_model=GradientBoostingClassifier(), cate_models=GradientBoostingRegressor()) est.fit(Y, T, X=np.hstack([X, W])) treatment_effects = est.effect(np.hstack([X_test, W_test])) # Fit with bootstrap confidence interval construction enabled est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap') treatment_effects = est.effect(np.hstack([X_test, W_test])) lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs
  • SLearner
from econml.metalearners import SLearner from sklearn.ensemble import GradientBoostingRegressor est = SLearner(overall_model=GradientBoostingRegressor()) est.fit(Y, T, X=np.hstack([X, W])) treatment_effects = est.effect(np.hstack([X_test, W_test]))
  • TLearner
from econml.metalearners import TLearner from sklearn.ensemble import GradientBoostingRegressor est = TLearner(models=GradientBoostingRegressor()) est.fit(Y, T, X=np.hstack([X, W])) treatment_effects = est.effect(np.hstack([X_test, W_test]))
</details> <details> <summary>Doubly Robust Learners (click to expand) </summary>
  • Linear final stage
from econml.dr import LinearDRLearner from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier est = LinearDRLearner(model_propensity=GradientBoostingClassifier(), model_regression=GradientBoostingRegressor()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Sparse linear final stage
from econml.dr import SparseLinearDRLearner from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(), model_regression=GradientBoostingRegressor()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Nonparametric final stage
from econml.dr import ForestDRLearner from sklearn.ensemble import

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多