pipeless

pipeless

开源框架,简化计算机视觉应用开发和部署

Pipeless是一个开源框架,旨在简化计算机视觉应用的开发和部署过程。该框架自动化处理代码并行化、多媒体管道和内存管理等复杂任务,加速实时应用开发。Pipeless采用模块化设计,支持动态组合处理阶段和多种推理运行时,可部署于边缘设备和云端。通过简化开发流程,Pipeless有效提升了计算机视觉项目的开发效率。

Pipeless计算机视觉开源框架实时处理多流处理Github开源项目
<p align="center"> <a href="https://pipeless.ai"> <picture> <source media="(prefers-color-scheme: dark)" srcset="assets/pipeless-400x400-rounded.png"> <img src="https://raw.githubusercontent.com/pipeless-ai/pipeless/main/assets/pipeless-400x400-rounded.png" height="128"> </picture> <h1 align="center">Pipeless</h1> </a> </p> <p align="center"> <a aria-label="Pipeless logo" href="https://pipeless.ai"> <img src="https://img.shields.io/badge/MADE%20BY%20Pipeless%20ai-000000.svg?style=for-the-badge&logo=Pipeless&labelColor=000"> </a> <a aria-label="Pipeless latest version" href="https://github.com/pipeless-ai/pipeless/releases"> <img alt="" src="https://img.shields.io/github/v/release/pipeless-ai/pipeless?style=for-the-badge&label=latest&labelColor=000000"> </a> <a aria-label="License" href="https://github.com/miguelaeh/pipeless/blob/main/LICENSE"> <img alt="" src="https://img.shields.io/pypi/l/pipeless-ai?style=for-the-badge&labelColor=000000"> </a> <a aria-label="Join the community on GitHub" href="https://github.com/miguelaeh/pipeless/discussions"> <img alt="" src="https://img.shields.io/badge/Join%20the%20discussions-black.svg?style=for-the-badge&logo=&labelColor=000000&logoWidth=20"> </a> <a aria-label="Join the community on Discord" href="https://discord.gg/K2qxQ8uedG"> <img alt="" src="https://img.shields.io/discord/1156923628831649873?style=for-the-badge&logo=discord&logoColor=FFFFFF&label=Chat%20on%20discord&labelColor=black"> </a> </p> <div align="center"> <p><b>Easily create, deploy and run computer vision applications.</b></p> <br /> <br /> <div> <img width="382" align="center" alt="Loading video..." src="https://raw.githubusercontent.com/pipeless-ai/pipeless/main/assets/examples.gif"> </div>

<br /><br /> <a href="https://agents.pipeless.ai">Check out our hosted agents solution</a>

</div>

Pipeless is an open-source framework that takes care of everything you need to develop and deploy computer vision applications in just minutes. That includes code parallelization, multimedia pipelines, memory management, model inference, multi-stream management, and more. Pipeless allows you to ship applications that work in real-time in minutes instead of weeks/months.

Pipeless is inspired by modern serverless technologies. You provide some functions and Pipeless takes care of executing them for new video frames and everything involved.

With Pipeless you create self-contained boxes that we call "stages". Each stage is a micro pipeline that performs a specific task. Then, you can combine stages dynamically per stream, allowing you to process each stream with a different pipeline without changing your code and without restarting the program. To create a stage you simply provide a pre-process function, a model and a post-process function.

You can load industry-standard models, such as YOLO, or custom models in one of the supported inference runtimes just by providing a URL. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box.

You can deploy your Pipeless and your applications to edge and IoT devices or to the cloud. There are several tools for the deployment, including container images.

The following is a non-exhaustive set of relevant features that Pipeless includes:

  • Multi-stream support: process several streams at the same time.
  • Dynamic stream configuration: add, edit, and remove streams on the fly via a CLI or REST API (more adapters to come).
  • Multi-language support: you can Write your hooks in several languages, including Python.
  • Dynamic processing steps: you can add any number of steps to your stream processing, and even modify those steps dynamically on a per-stream basis.
  • Built-in restart policies: Forget about dealing with connection errors, cameras that fail, etc. You can easily specify restart policies per stream that handle those situations automatially.
  • Highly parallelized: do not worry about multi-threading and/or multi-processing, Pipeless takes care of that for you.
  • Several inference runtimes supported: Provide a model and select one of the supported inference runtimes to run it out-of-the-box in CPU or GPUs. We support CUDA, TensorRT, OpenVINO, CoreML, and more to come.
  • Well-defined project structure and highly reusable code: Pipeless uses the file system structure to load processing stages and hooks, helping you organize the code in highly reusable boxes. Each stage is a directory, each hook is defined on its own file.

<a href="https://www.pipeless.ai/docs/docs/v1/getting-started#create-a-new-project">Get started now!</a>

Join our community and contribute to making the lives of computer vision developers easier!

Requirements ☝️

  • Python. Pre-built binaries are linked to Python 3.10 in Linux amd64, 3.8 in Linux arm64, and 3.12 in macOS. If you have a different Python version, provide the --build flag to the install script to build from source so Pipeless links to your installed Python version (or update your version and use a pre-built binary, which is simpler).
  • Gstreamer 1.20.3. Verify with gst-launch-1.0 --gst-version. Installation instructions here

Installation 🛠️

curl https://raw.githubusercontent.com/pipeless-ai/pipeless/main/install.sh | bash

Find more information and installation options here.

Using docker

Instead of installing locally, you can alternatively use docker and save the time of installing dependencies:

docker run miguelaeh/pipeless --help

To use it with CUDA:

docker run miguelaeh/pipeless:latest-cuda --help

To use with TensorRT use:

docker run miguelaeh/pipeless:latest-tensorrt --help

Find the whole container documentation here.

Getting Started 🚀

Init a project:

pipeless init my_project --template scaffold cd my_project

Start Pipeless:

pipeless start --stages-dir .

Provide a stream:

pipeless add stream --input-uri "https://pipeless-public.s3.eu-west-3.amazonaws.com/cats.mp4" --output-uri "screen" --frame-path "my-stage"

The code generated is an empty template that scafold a stage so it will do nothing. Please go to the examples to complete that stage.

You can also use the interactive shell to create the project:

<img width="382" align="center" alt="Loading video..." src="https://raw.githubusercontent.com/pipeless-ai/pipeless/main/assets/interactive_shell.gif" />

Check the complete getting started guide or plunge into the complete documentation.

Examples 🌟

You can find some examples under the examples directory. Just copy those folders inside your project and play with them.

Find here the whole list of examples and step by step guides.

Benchmark 📈

We deployed Pipeless to several different devices so you can have a general idea of its performance. Find the results at the benchmark section of the docs.

Notable Changes

Notable changes indicate important changes between versions. Please check the whole list of notable changes.

Contributing 🤝

Thanks for your interest in contributing! Contributions are welcome and encouraged. While we're working on creating detailed contributing guidelines, here are a few general steps to get started:

  1. Fork this repository.
  2. Create a new branch: git checkout -b feature-branch.
  3. Make your changes and commit them: git commit -m 'Add new feature'.
  4. Push your changes to your fork: git push origin feature-branch.
  5. Open a GitHub pull request describing your changes.

We appreciate your help in making this project better!

Please note that for major changes or new features, it's a good idea to discuss them in an issue first so we can coordinate efforts.

License 📄

This project is licensed under the Apache License 2.0.

Apache License 2.0 Summary

The Apache License 2.0 is a permissive open-source license that allows you to use, modify, and distribute this software for personal or commercial purposes. It comes with certain obligations, including providing attribution to the original authors and including the original license text in your distributions.

For the full license text, please refer to the Apache License 2.0.

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多