yagooglesearch
is a Python library for executing intelligent, realistic-looking, and tunable Google searches. It
simulates real human Google search behavior to prevent rate limiting by Google (the dreaded HTTP 429 response), and if
HTTP 429 blocked by Google, logic to back off and continue trying. The library does not use the Google API and is
heavily based off the googlesearch library. The features include:
requests
library for HTTP requests and cookie managementThis code is supplied as-is and you are fully responsible for how it is used. Scraping Google Search results may violate their Terms of Service. Another Python Google search library had some interesting information/discussion on it:
Google's preferred method is to use their API.
pip install yagooglesearch
git clone https://github.com/opsdisk/yagooglesearch cd yagooglesearch virtualenv -p python3 .venv # If using a virtual environment. source .venv/bin/activate # If using a virtual environment. pip install . # Reads from pyproject.toml
import yagooglesearch query = "site:github.com" client = yagooglesearch.SearchClient( query, tbs="li:1", max_search_result_urls_to_return=100, http_429_cool_off_time_in_minutes=45, http_429_cool_off_factor=1.5, # proxy="socks5h://127.0.0.1:9050", verbosity=5, verbose_output=True, # False (only URLs) or True (rank, title, description, and URL) ) client.assign_random_user_agent() urls = client.search() len(urls) for url in urls: print(url)
Even though searching Google through the GUI will display a message like "About 13,000,000 results", that does not mean
yagooglesearch
will find anything close to that. Testing shows that at most, about 400 results are returned. If you
set 400 < max_search_result_urls_to_return
, a warning message will be printed to the logs. See
https://github.com/opsdisk/yagooglesearch/issues/28 for the discussion.
Low and slow is the strategy when executing Google searches using yagooglesearch
. If you start getting HTTP 429
responses, Google has rightfully detected you as a bot and will block your IP for a set period of time. yagooglesearch
is not able to bypass CAPTCHA, but you can do this manually by performing a Google search from a browser and proving you
are a human.
The criteria and thresholds to getting blocked is unknown, but in general, randomizing the user agent, waiting enough time between paged search results (7-17 seconds), and waiting enough time between different Google searches (30-60 seconds) should suffice. Your mileage will definitely vary though. Using this library with Tor will likely get you blocked quickly.
If yagooglesearch
detects an HTTP 429 response from Google, it will sleep for http_429_cool_off_time_in_minutes
minutes and then try again. Each time an HTTP 429 is detected, it increases the wait time by a factor of
http_429_cool_off_factor
.
The goal is to have yagooglesearch
worry about HTTP 429 detection and recovery and not put the burden on the script
using it.
If you do not want yagooglesearch
to handle HTTP 429s and would rather handle it yourself, pass
yagooglesearch_manages_http_429s=False
when instantiating the yagooglesearch object. If an HTTP 429 is detected, the
string "HTTP_429_DETECTED" is added to a list object that will be returned, and it's up to you on what the next step
should be. The list object will contain any URLs found before the HTTP 429 was detected.
import yagooglesearch query = "site:twitter.com" client = yagooglesearch.SearchClient( query, tbs="li:1", verbosity=4, num=10, max_search_result_urls_to_return=1000, minimum_delay_between_paged_results_in_seconds=1, yagooglesearch_manages_http_429s=False, # Add to manage HTTP 429s. ) client.assign_random_user_agent() urls = client.search() if "HTTP_429_DETECTED" in urls: print("HTTP 429 detected...it's up to you to modify your search.") # Remove HTTP_429_DETECTED from list. urls.remove("HTTP_429_DETECTED") print("URLs found before HTTP 429 detected...") for url in urls: print(url)
yagooglesearch
supports the use of a proxy. The provided proxy is used for the entire life cycle of the search to
make it look more human, instead of rotating through various proxies for different portions of the search. The general
search life cycle is:
google.com
To use a proxy, provide a proxy string when initializing a yagooglesearch.SearchClient
object:
client = yagooglesearch.SearchClient( "site:github.com", proxy="socks5h://127.0.0.1:9050", )
Supported proxy schemes are based off those supported in the Python requests
library
(https://docs.python-requests.org/en/master/user/advanced/#proxies):
http
https
socks5
- "causes the DNS resolution to happen on the client, rather than on the proxy server." You likely do
not want this since all DNS lookups would source from where yagooglesearch
is being run instead of the proxy.socks5h
- "If you want to resolve the domains on the proxy server, use socks5h as the scheme." This is the best
option if you are using SOCKS because the DNS lookup and Google search is sourced from the proxy IP address.If you are using a self-signed certificate for an HTTPS proxy, you will likely need to disable SSL/TLS verification when either:
yagooglesearch.SearchClient
object:import yagooglesearch query = "site:github.com" client = yagooglesearch.SearchClient( query, proxy="http://127.0.0.1:8080", verify_ssl=False, verbosity=5, )
query = "site:github.com" client = yagooglesearch.SearchClient( query, proxy="http://127.0.0.1:8080", verbosity=5, ) client.verify_ssl = False
If you want to use multiple proxies, that burden is on the script utilizing the yagooglesearch
library to instantiate
a new yagooglesearch.SearchClient
object with the different proxy. Below is an example of looping through a list of
proxies:
import yagooglesearch proxies = [ "socks5h://127.0.0.1:9050", "socks5h://127.0.0.1:9051", "http://127.0.0.1:9052", # HTTPS proxy with a self-signed SSL/TLS certificate. ] search_queries = [ "python", "site:github.com pagodo", "peanut butter toast", "are dragons real?", "ssh tunneling", ] proxy_rotation_index = 0 for search_query in search_queries: # Rotate through the list of proxies using modulus to ensure the index is in the proxies list. proxy_index = proxy_rotation_index % len(proxies) client = yagooglesearch.SearchClient( search_query, proxy=proxies[proxy_index], ) # Only disable SSL/TLS verification for the HTTPS proxy using a self-signed certificate. if proxies[proxy_index].startswith("http://"): client.verify_ssl = False urls_list = client.search() print(urls_list) proxy_rotation_index += 1
If you have a GOOGLE_ABUSE_EXEMPTION
cookie value, it can be passed into google_exemption
when instantiating the
SearchClient
object.
The &tbs=
parameter is used to specify either verbatim or time-based filters.
&tbs=li:1
Time filter | &tbs= URL parameter | Notes |
---|---|---|
Past hour | qdr:h | |
Past day | qdr:d | Past 24 hours |
Past week | qdr:w | |
Past month | qdr:m | |
Past year | qdr:y | |
Custom | cdr:1,cd_min:1/1/2021,cd_max:6/1/2021 | See yagooglesearch.get_tbs() function |
Currently, the .filter_search_result_urls()
function will remove any url with the word "google" in it. This is to
prevent the returned search URLs from being polluted with Google URLs. Note this if you are trying to explicitly search
for results that may have "google" in the URL, such as site:google.com computer
Distributed under the BSD 3-Clause License. See LICENSE for more information.
Project Link: https://github.com/opsdisk/yagooglesearch
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号