Zipkin PHP is the official PHP Tracer implementation for Zipkin, supported by the OpenZipkin community.
composer require openzipkin/zipkin
use Zipkin\Annotation; use Zipkin\Endpoint; use Zipkin\Samplers\BinarySampler; use Zipkin\TracingBuilder; use Zipkin\Reporters\Http; // First we create the endpoint that describes our service $endpoint = Endpoint::create('my_service'); $reporter = new Http(['endpoint_url' => 'http://myzipkin:9411/api/v2/spans']); $sampler = BinarySampler::createAsAlwaysSample(); $tracing = TracingBuilder::create() ->havingLocalEndpoint($endpoint) ->havingSampler($sampler) ->havingReporter($reporter) ->build(); $tracer = $tracing->getTracer(); ... $tracer->flush();
Obs. for a more complete frontend/backend example, check this repository.
The tracer creates and joins spans that model the latency of potentially distributed work. It can employ sampling to reduce overhead in process or to reduce the amount of data sent to Zipkin.
Spans returned by a tracer report data to Zipkin when finished, or do nothing if unsampled. After starting a span, you can annotate events of interest or add tags containing details or lookup keys.
Spans have a context which includes trace identifiers that place it at the correct spot in the tree representing the distributed operation.
When tracing local code, just run it inside a span
$span = $tracer->newTrace(); $span->setName('encode'); $span->start(); try { doSomethingExpensive(); } finally { $span->finish(); }
In the above example, the span is the root of the trace. In many cases,
you will be a part of an existing trace. When this is the case, call
newChild instead of newTrace
$span = $tracer->newChild($root->getContext()); $span->setName('encode'); $span->start(); try { doSomethingExpensive(); } finally { $span->finish(); }
Once you have a span, you can add tags to it, which can be used as lookup keys or details. For example, you might add a tag with your runtime version.
$span->tag('http.status_code', '200');
RPC tracing is often done automatically by interceptors. Under the scenes, they add tags and events that relate to their role in an RPC operation.
Here's an example of a client span:
// before you send a request, add metadata that describes the operation $span = $tracer->newTrace(); $span->setName('get'); $span->setKind(Kind\CLIENT); $span->tag('http.status_code', '200'); $span->tag(Tags\HTTP_PATH, '/api'); $span->setRemoteEndpoint(Endpoint::create('backend', 127 << 24 | 1, null, 8080)); // when the request is scheduled, start the span $span->start(); // if you have callbacks for when data is on the wire, note those events $span->annotate(Annotation\WIRE_SEND); $span->annotate(Annotation\WIRE_RECV); // when the response is complete, finish the span $span->finish();
Sampling may be employed to reduce the data collected and reported out of process. When a span isn't sampled, it adds no overhead (noop).
Sampling is an up-front decision, meaning that the decision to report data is made at the first operation in a trace, and that decision is propagated downstream.
By default, there's a global sampler that applies a single rate to all
traced operations. Sampler is how you indicate this,
and it defaults to trace every request.
You may want to apply different policies depending on what the operation is. For example, you might not want to trace requests to static resources such as images, or you might want to trace all requests to a new api.
Most users will use a framework interceptor which automates this sort of policy. Here's how they might work internally.
private function newTrace(Request $request) { $flags = SamplingFlags::createAsEmpty(); if (strpos($request->getUri(), '/experimental') === 0) { $flags = DefaultSamplingFlags::createAsSampled(); } else if (strpos($request->getUri(), '/static') === 0) { $flags = DefaultSamplingFlags::createAsSampled(); } return $tracer->newTrace($flags); }
Propagation is needed to ensure activity originating from the same root are collected together in the same trace. The most common propagation approach is to copy a trace context from a client sending an RPC request to a server receiving it.
For example, when an downstream Http call is made, its trace context is sent along with it, encoded as request headers:
Client Span Server Span
┌──────────────────┐ ┌──────────────────┐
│ │ │ │
│ TraceContext │ Http Request Headers │ TraceContext │
│ ┌──────────────┐ │ ┌───────────────────┐ │ ┌──────────────┐ │
│ │ TraceId │ │ │ X-B3-TraceId │ │ │ TraceId │ │
│ │ │ │ │ │ │ │ │ │
│ │ ParentSpanId │ │ Extract │ X-B3-ParentSpanId │ Inject │ │ ParentSpanId │ │
│ │ ├─┼─────────>│ ├────────┼>│ │ │
│ │ SpanId │ │ │ X-B3-SpanId │ │ │ SpanId │ │
│ │ │ │ │ │ │ │ │ │
│ │ Sampled │ │ │ X-B3-Sampled │ │ │ Sampled │ │
│ └──────────────┘ │ └───────────────────┘ │ └──────────────┘ │
│ │ │ │
└──────────────────┘ └──────────────────┘
The names above are from B3 Propagation, which is built-in to Brave and has implementations in many languages and frameworks.
Most users will use a framework interceptor which automates propagation. Here's how they might work internally.
Here's what client-side propagation might look like
// configure a function that injects a trace context into a request $injector = $tracing->getPropagation()->getInjector(new RequestHeaders); // before a request is sent, add the current span's context to it $injector($span->getContext(), $request);
Here's what server-side propagation might look like
// configure a function that extracts the trace context from a request $extractor = $tracing->getPropagation()->getExtractor(new RequestHeaders); $extracted = $extractor($request); $span = $tracer->newChild($extracted); $span->setKind(Kind\SERVER);
If you aren't using a framework or don't have access to the Request object, you can extract the context from the $_SERVER variable
$extractor = $tracing->getPropagation()->getExtractor(new ServerHeaders); $extracted = $extractor($_SERVER);
The Extractor reads trace identifiers and sampling status
from an incoming request or message. The carrier is usually a request object
or headers.
SamplingFlags|TraceContext is usually only used with $tracer->newChild(extracted), unless you are
sharing span IDs between a client and a server.
Extractor will output a SamplingFlags|TraceContext with one of the following:


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型 交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号