owmeta

owmeta

Python数据访问层整合线虫C. elegans解剖和生理学数据

owmeta是为OpenWorm项目开发的Python数据访问层,整合线虫C. elegans的解剖和生理学数据。它提供简单的Python API用于查询线虫细胞信息,支持数据共享以构建数据到模型的管道。owmeta通过统一的数据访问层封装不同的数据表示,让用户可以直接操作线虫生物学相关对象,无需关注底层实现细节。

owmetaOpenWorm数据访问层C. elegans神经网络Github开源项目

Build Status Docs Coverage Status

owmeta

<img width="1207" alt="pyow_in_overview" src="openworm-overview.png">

A data access layer in Python which integrates disparate structures and representations for C. elegans anatomy and physiology. Enables a simple Python API for asking various questions about the cells of the C. elegans and enabling data sharing for the purpose of building a data-to-model pipeline for the OpenWorm project.

Overview

<img align="left" width="128" alt="owmeta_logo" src="owmeta-logo.min.svg"/>

The data and models required to simulate C. elegans are highly heterogeneous. Consequently, from a software perspective, a variety of underlying representations are needed to store different aspects of the relevant anatomy and physiology. For example, a NetworkX representation of the connectome as a complex graph enables questions to be asked about nearest neighbors of a given neuron. An RDF semantic graph representation is useful for reading and writing annotations about multiple aspects of a neuron, such as what papers have been written about it, properties it may have such as ion channels and neurotransmitter receptors, etc. A NeuroML representation is useful for answering questions about model morphology and simulation parameters. A Blender representation is a full 3D shape definition that can be used for calculations in 3D space.

The diversity of underlying representations required for OpenWorm presents a challenge for data integration and consolidation. owmeta solves this challenge with a unified data access layer whereby different representations are encapsulated into an abstract view. This allows the user to work with objects related to the biological reality of the worm, and forget about which representation is being used under the hood. The worm itself has a unified sense of neurons, networks, muscles, ion channels, etc. and so should our code.

Relationship to ChannelWorm2

ChannelWorm2 is the sub-project of OpenWorm which houses ion channel models. In the future, we expect ChannelWorm2 to be a "consumer" of owmeta. An owmeta database will house physical models, the digitized plots they are derived from (there is a Plot type in owmeta), and provide code to put those models into enumerated formats along with auxiliary files or comments. However, because these projects were not developed sequentially, there is currently some overlap in functionality, and owmeta itself houses a fairly substantial amount of physiological information about C. elegans. Ultimately, the pure core of owmeta, which is meant to be a data framework for storing metadata and provenance (i.e. parameters and trajectories associated with simulations), will be separated out into standalone functionality.

Versioning data as code

A library that attempts to reliably expose dynamic data can often be broken because the underlying data sets that define it change over time. This is because data changes can cause queries to return different answers than before, causing unpredictable behavior.

As such, to create a stable foundational library for others to reuse, the version of the owmeta library guarantees the user a specific version of the data behind that library. In addition, unit tests are used to ensure basic sanity checks on data are maintained. As data are improved, the maintainers of the library can perform appropriate regression tests prior to each new release to guarantee stability.

Installation

See INSTALL.md

Quickstart

To get started, you'll need to connect to a database. The OpenWorm owmeta "project" is currently hosted at https://github.com/openworm/OpenWormData.git. This project holds a working-copy of the database. You can retrieve it by executing the following command line after owmeta installation:

owm clone https://github.com/openworm/OpenWormData.git --branch owmeta

This command should create a directory .owm in your current working directory. Then, in Python, from the same working directory:

>>> from owmeta_core.command import OWM >>> conn = OWM().connect()

This creates a connection to the project stored under the .owm directory.

Then you can try out a few things:

# Make the context >>> from owmeta_core.context import Context >>> ctx = conn(Context)(ident='http://openworm.org/data') # Grab the representation of the neuronal network >>> from owmeta.worm import Worm >>> net = ctx.stored(Worm).query().neuron_network() # Grab a specific neuron >>> from owmeta.neuron import Neuron >>> aval = ctx.stored(Neuron).query(name='AVAL') # Get the neuron's type >>> aval.type.one() 'interneuron' # Count how many connections come from AVAL >>> aval.connection.count('pre') 86

More examples

Return information about individual neurons:

>>> aval.name() 'AVAL' # List all known receptors >>> sorted(aval.receptors()) ['GGR-3', 'GLR-1', ... 'NPR-4', 'UNC-8'] # Show how many chemical synapses go in and out of AVAL >>> aval.connection.count('either', syntype='send') 105

Return the list of all neurons:

>>> len(set(net.neuron_names())) 302 >>> sorted(net.neuron_names()) ['ADAL', 'ADAR', ... 'VD8', 'VD9']

Return a set of all muscles:

>>> muscles = ctx.stored(Worm).query().muscles() >>> len(muscles) 158

Because the ultimate aim of OpenWorm is to be a platform for biological research, the physiological data in owmeta should be uncontroversial and well supported by evidence. Using the Evidence type, it is possible to link data and models to corresponding articles from peer-reviewed literature:

>>> from owmeta.document import Document >>> from owmeta.evidence import Evidence # Make a context for evidence (i.e., statements about other groups of statements) >>> evctx = conn(Context)(ident='http://example.org/evidence/context') # Make a context for defining domain knowledge >>> dctx = evctx(Context)(ident='http://example.org/data/context') >>> doc = evctx(Document)(key="Sulston83", author='Sulston et al.', date='1983') >>> e = evctx(Evidence)(key="Sulston83", reference=doc) >>> avdl = dctx(Neuron)(name="AVDL") >>> avdl.lineageName("AB alaaapalr") owmeta_core.statement.Statement(subj=Neuron(ident=rdflib.term.URIRef('http://data.openworm.org/sci/bio/Neuron#AVDL')), prop=owmeta.cell.Cell_lineageName(owner=Neuron(ident=rdflib.term.URIRef('http://data.openworm.org/sci/bio/Neuron#AVDL'))), obj=owmeta_core.dataobject_property.ContextualizedPropertyValue(rdflib.term.Literal('AB alaaapalr')), context=owmeta_core.context.Context(ident="http://example.org/data/context")) >>> e.supports(dctx.rdf_object) owmeta_core.statement.Statement(subj=Evidence(ident=rdflib.term.URIRef('http://data.openworm.org/Evidence#Sulston83')), prop=owmeta.evidence.Evidence_supports(owner=Evidence(ident=rdflib.term.URIRef('http://data.openworm.org/Evidence#Sulston83'))), obj=ContextDataObject(ident=rdflib.term.URIRef('http://example.org/data/context')), context=owmeta_core.context.Context(ident="http://example.org/evidence/context")) >>> with conn.transaction_manager: ... dctx.save_context() ... evctx.save_context()

Retrieve evidence:

>>> doc = evctx.stored(Document)(author='Sulston et al.', date='1983') >>> e0 = evctx.stored(Evidence)(reference=doc) >>> supported_ctx = e0.supports() # is the neuron's presence asserted? >>> dctx.identifier == supported_ctx.identifier True

Query for neurons in C. elegans:

>>> from owmeta.network import Network # The default Worm() is for C. elegans >>> with ctx.stored(Worm, Neuron, Network) as cctx: ... w = cctx.Worm() ... net = cctx.Network() ... w.neuron_network(net) owmeta_core.statement.Statement(subj=Worm(ident=rdflib.term.URIRef('http://data.openworm.org/sci/bio/Worm#a8020ed8519038a6bbc98f1792c46c97b')), prop=owmeta.worm.Worm_neuron_network(owner=Worm(ident=rdflib.term.URIRef('http://data.openworm.org/sci/bio/Worm#a8020ed8519038a6bbc98f1792c46c97b'))), obj=Network(ident=rdflib.term.URIRef('http://data.openworm.org/sci/bio/Network#a5859bb1e51537f60e506c283401fcd84')), context=owmeta_core.context.QueryContext(ident="http://openworm.org/data")) ... neur = cctx.Neuron.query() ... net.neuron(neur) ... neur.count() 302

See what neurons express a given neuropeptide:

>>> n = ctx.stored(Neuron).query() >>> n.neuropeptide("INS-26") owmeta_core.statement.Statement(subj=Neuron(ident=rdflib.term.Variable('aNeuron_...')), prop=owmeta.neuron.Neuron_neuropeptide(owner=Neuron(ident=rdflib.term.Variable('aNeuron_...'))), obj=owmeta_core.dataobject_property.ContextualizedPropertyValue(rdflib.term.Literal('INS-26')), context=owmeta_core.context.QueryContext(ident="http://openworm.org/data")) >>> sorted(x.name() for x in n.load()) ['ASEL', 'ASER', 'ASIL', 'ASIR']

Get direct access to the RDFLib graph:

>>> conn.rdf.query("SELECT ?y WHERE { ?x rdf:type ?y }") <rdflib.plugins.sparql.processor.SPARQLResult object at ...>

Modeling data

As described above, ultimately, ion channel models will be part of the ChannelWorm2 repository. As the project evolves, other models, such as for reproduction and development, may be housed in their own repositories. But for the time being, the owmeta repository contains specific models as well. These models will eventually be transferred to an appropriate and independent data repository within the OpenWorm suite of tools.

# Get data for a subtype of voltage-gated potassium channels >>> from owmeta.channel import Channel >>> kv1 = ctx(Channel)(subfamily='Kv1.1') >>> kv1.models()

The same type of operation can be used to obtain the experimental data a given model was derived from.

# Get experiment(s) that back up the data model >> some_model = mods[0] >> some_model.references.get()

Finally, when you're done accessing the database, be sure to disconnect from it:

>>> conn.disconnect()

More examples can be found in the owmeta-core documentation and in the ./examples directory of the owmeta Git repository.

Documentation

Further documentation is available online.

Contributing

We happily welcome pull requests and bug reports. If, you are not sure how you can contribute, fill out this (short) form, and you'll receive an invite to our Slack chat where you can initiate more in-depth conversations.

Questions/Concerns?

You can ask questions, leave bug reports, or propose features on our issue tracker.

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多