DI-treetensor

DI-treetensor

树状张量结构简化深度学习中的复杂计算

DI-treetensor是OpenDILab开发的树状张量结构库,支持树形方式进行张量操作,简化了复杂的树形计算过程。该项目提供创建树状张量、数学运算和反向传播等功能,与PyTorch兼容。DI-treetensor为树形数据处理提供了灵活高效的解决方案,适用于深度学习中的复杂数据结构处理。

DI-treetensor张量树形结构PyTorchOpenDILabGithub开源项目
<div align="center"> <a href="https://opendilab.github.io/DI-treetensor/"><img width="500px" height="auto" src="https://yellow-cdn.veclightyear.com/835a84d5/f5ec5397-4262-46fb-a0f1-dff54d3363a1.svg"></a> </div>

PyPI PyPI - Python版本 代码行数 注释

文档部署 代码测试 徽章创建 包发布 codecov

GitHub星标 GitHub分支 GitHub提交活动 GitHub问题 GitHub拉取请求 贡献者 GitHub许可证

treetensor是一个通用的基于树的张量结构,主要由OpenDILab贡献者开发。

几乎所有操作都可以以树的形式方便地支持,以简化计算基于树结构时的处理过程。

安装

你可以使用pip命令行从官方PyPI网站简单安装它。

pip install di-treetensor

有关安装的更多信息,你可以参考安装

文档

详细文档托管在https://opendilab.github.io/DI-treetensor

目前只提供英文版本,中文文档仍在开发中。

快速开始

你可以基于FastTreeValue轻松创建树值对象。

import builtins import os from functools import partial import treetensor.torch as torch print = partial(builtins.print, sep=os.linesep) if __name__ == '__main__': # 创建树张量 t = torch.randn({'a': (2, 3), 'b': {'x': (3, 4)}}) print(t) print(torch.randn(4, 5)) # 创建普通张量 print() # 树的结构 print('树的结构') print('t.a:', t.a) # t.a是原生张量 print('t.b:', t.b) # t.b是树张量 print('t.b.x', t.b.x) # t.b.x是原生张量 print() # 数学计算 print('数学计算') print('t ** 2:', t ** 2) print('torch.sin(t).cos()', torch.sin(t).cos()) print() # 反向计算 print('反向计算') t.requires_grad_(True) t.std().arctan().backward() print('t的梯度:', t.grad) print() # 原生操作 # 所有操作都可以像原始`torch`一样使用 print('原生操作') print('torch.sin(t.a)', torch.sin(t.a)) # 原生张量的sin

结果应该是

<Tensor 0x7f0dae602760> ├── a --> tensor([[-1.2672, -1.5817, -0.3141], │ [ 1.8107, -0.1023, 0.0940]]) └── b --> <Tensor 0x7f0dae602820> └── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085], [ 1.5956, 0.8825, -0.5702, -0.2247], [ 0.9235, 0.4538, 0.8775, -0.2642]]) tensor([[-0.9559, 0.7684, 0.2682, -0.6419, 0.8637], [ 0.9526, 0.2927, -0.0591, 1.2804, -0.2455], [ 0.4699, -0.9998, 0.6324, -0.6885, 1.1488], [ 0.8920, 0.4401, -0.7785, 0.5931, 0.0435]])

树的结构 t.a: tensor([[-1.2672, -1.5817, -0.3141], [ 1.8107, -0.1023, 0.0940]]) t.b: <Tensor 0x7f0dae602820> └── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085], [ 1.5956, 0.8825, -0.5702, -0.2247], [ 0.9235, 0.4538, 0.8775, -0.2642]])

t.b.x tensor([[ 1.2224, -0.3445, -0.9980, -0.4085], [ 1.5956, 0.8825, -0.5702, -0.2247], [ 0.9235, 0.4538, 0.8775, -0.2642]])

数学计算 t ** 2: <Tensor 0x7f0dae602eb0> ├── a --> tensor([[1.6057, 2.5018, 0.0986], │ [3.2786, 0.0105, 0.0088]]) └── b --> <Tensor 0x7f0dae60c040> └── x --> tensor([[1.4943, 0.1187, 0.9960, 0.1669], [2.5458, 0.7789, 0.3252, 0.0505], [0.8528, 0.2059, 0.7699, 0.0698]])

torch.sin(t).cos() <Tensor 0x7f0dae621910> ├── a --> tensor([[0.5782, 0.5404, 0.9527], │ [0.5642, 0.9948, 0.9956]]) └── b --> <Tensor 0x7f0dae6216a0> └── x --> tensor([[0.5898, 0.9435, 0.6672, 0.9221], [0.5406, 0.7163, 0.8578, 0.9753], [0.6983, 0.9054, 0.7185, 0.9661]])

反向计算 t的梯度: <Tensor 0x7f0dae60c400> ├── a --> tensor([[-0.0435, -0.0535, -0.0131], │ [ 0.0545, -0.0064, -0.0002]]) └── b --> <Tensor 0x7f0dae60cbe0> └── x --> tensor([[ 0.0357, -0.0141, -0.0349, -0.0162], [ 0.0476, 0.0249, -0.0213, -0.0103], [ 0.0262, 0.0113, 0.0248, -0.0116]])

原生操作 torch.sin(t.a) tensor([[-0.9543, -0.9999, -0.3089], [ 0.9714, -0.1021, 0.0939]], grad_fn=<SinBackward>)


若需更多快速入门说明和进一步用法,请查看:

* [快速入门](https://opendilab.github.io/DI-treetensor/main/tutorials/quick_start/index.html)

## 扩展

如果您需要将`treevalue`对象转换为可运行的源代码,可以使用[potc-treevalue](https://github.com/potc-dev/potc-treevalue)插件,安装命令如下

pip install DI-treetensor[potc]


在potc中,您可以将对象转换为可运行的Python源代码,之后可以通过Python解释器加载为对象,如下图所示

![potc系统](https://yellow-cdn.veclightyear.com/835a84d5/98e9c529-9a09-4023-bf6f-e4ed1e92d13e.svg)

更多信息,您可以参考

- [potc-dev/potc](https://github.com/potc-dev/potc)
- [potc-dev/potc-treevalue](https://github.com/potc-dev/potc-treevalue)
- [potc-dev/potc-torch](https://github.com/potc-dev/potc-torch)
- [Potc插件安装](https://opendilab.github.io/DI-treetensor/main/tutorials/plugins/index.html#potc-support)

## 贡献

我们感谢所有为改进DI-treetensor而做出的贡献,无论是逻辑还是系统设计。更多指南请参考CONTRIBUTING.md。

用户可以加入我们的[slack交流频道](https://join.slack.com/t/opendilab/shared_invite/zt-v9tmv4fp-nUBAQEH1_Kuyu_q4plBssQ),或联系核心开发者[HansBug](https://github.com/HansBug)进行更详细的讨论。

## 许可证

`DI-treetensor`在Apache 2.0许可下发布。

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多