DGMR模型,革新短期天气预报技术
本项目是DeepMind的Skillful Nowcasting GAN深度生成模型(DGMR)的开源实现,专注于提高短期天气预报精度。基于PyTorch Lightning框架开发,严格遵循DeepMind公布的伪代码。项目集成了预训练模型,支持英国和美国的降水雷达数据,并通过HuggingFace Datasets简化了数据获取流程。DGMR模型展示了生成高质量短期天气预报的能力,为气象预报领域带来了创新。
Implementation of DeepMind's Skillful Nowcasting GAN Deep Generative Model of Radar (DGMR) (https://arxiv.org/abs/2104.00954) in PyTorch Lightning.
This implementation matches as much as possible the pseudocode released by DeepMind. Each of the components (Sampler, Context conditioning stack, Latent conditioning stack, Discriminator, and Generator) are normal PyTorch modules. As the model training is a bit complicated, the overall architecture is wrapped in PyTorch Lightning.
The default parameters match what is written in the paper.
Clone the repository, then run
pip install -r requirements.txt pip install -e .
Alternatively, you can also install through pip install dgmr
The open-sourced UK training dataset has been mirrored to HuggingFace Datasets! This should enable training the original architecture on the original data for reproducing the results from the paper. The full dataset is roughly 1TB in size, and unfortunately, streaming the data from HF Datasets doesn't seem to work, so it has to be cached locally. We have added the sample dataset as well though, which can be directly streamed from GCP without costs.
The dataset can be loaded with
from datasets import load_dataset dataset = load_dataset("openclimatefix/nimrod-uk-1km")
For now, only the sample dataset support streaming in, as its data files are hosted on GCP, not HF, so it can be used with:
from datasets import load_dataset dataset = load_dataset("openclimatefix/nimrod-uk-1km", "sample", streaming=True)
The authors also used MRMS US precipitation radar data as another comparison. While that dataset was not released, the MRMS data is publicly available, and we have made that data available on HuggingFace Datasets as well here. This dataset is the raw 3500x7000 contiguous US MRMS data for 2016 through May 2022, is a few hundred GBs in size, with sporadic updates to more recent data planned. This dataset is in Zarr format, and can be streamed without caching locally through
from datasets import load_dataset dataset = load_dataset("openclimatefix/mrms", "default_sequence", streaming=True)
This steams the data with 24 timesteps per example, just like the UK DGMR dataset. To get individual MRMS frames, instead of a sequence, this can be achieved through
from datasets import load_dataset dataset = load_dataset("openclimatefix/mrms", "default", streaming=True)
Pretrained weights are be available through HuggingFace Hub, currently weights trained on the sample dataset. The whole DGMR model or different components can be loaded as the following:
from dgmr import DGMR, Sampler, Generator, Discriminator, LatentConditioningStack, ContextConditioningStack model = DGMR.from_pretrained("openclimatefix/dgmr") sampler = Sampler.from_pretrained("openclimatefix/dgmr-sampler") discriminator = Discriminator.from_pretrained("openclimatefix/dgmr-discriminator") latent_stack = LatentConditioningStack.from_pretrained("openclimatefix/dgmr-latent-conditioning-stack") context_stack = ContextConditioningStack.from_pretrained("openclimatefix/dgmr-context-conditioning-stack") generator = Generator(conditioning_stack=context_stack, latent_stack=latent_stack, sampler=sampler)
from dgmr import DGMR import torch.nn.functional as F import torch model = DGMR( forecast_steps=4, input_channels=1, output_shape=128, latent_channels=384, context_channels=192, num_samples=3, ) x = torch.rand((2, 4, 1, 128, 128)) out = model(x) y = torch.rand((2, 4, 1, 128, 128)) loss = F.mse_loss(y, out) loss.backward()
@article{ravuris2021skillful,
author={Suman Ravuri and Karel Lenc and Matthew Willson and Dmitry Kangin and Remi Lam and Piotr Mirowski and Megan Fitzsimons and Maria Athanassiadou and Sheleem Kashem and Sam Madge and Rachel Prudden Amol Mandhane and Aidan Clark and Andrew Brock and Karen Simonyan and Raia Hadsell and Niall Robinson Ellen Clancy and Alberto Arribas† and Shakir Mohamed},
title={Skillful Precipitation Nowcasting using Deep Generative Models of Radar},
journal={Nature},
volume={597},
pages={672--677},
year={2021}
}
Thanks goes to these wonderful people (emoji key):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tbody> <tr> <td align="center" valign="top" width="14.28%"><a href="https://www.jacobbieker.com"><img src="https://avatars.githubusercontent.com/u/7170359?v=4?s=100" width="100px;" alt="Jacob Bieker"/><br /><sub><b>Jacob Bieker</b></sub></a><br /><a href="https://github.com/openclimatefix/skillful_nowcasting/commits?author=jacobbieker" title="Code">💻</a></td> <td align="center" valign="top" width="14.28%"><a href="http://johmathe.name/"><img src="https://avatars.githubusercontent.com/u/467643?v=4?s=100" width="100px;" alt="Johan Mathe"/><br /><sub><b>Johan Mathe</b></sub></a><br /><a href="https://github.com/openclimatefix/skillful_nowcasting/commits?author=johmathe" title="Code">💻</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/ZHANGZ1YUE"><img src="https://avatars.githubusercontent.com/u/93907996?v=4?s=100" width="100px;" alt="Z1YUE"/><br /><sub><b>Z1YUE</b></sub></a><br /><a href="https://github.com/openclimatefix/skillful_nowcasting/issues?q=author%3AZHANGZ1YUE" title="Bug reports">🐛</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/GreenLimeSia"><img src="https://avatars.githubusercontent.com/u/28706611?v=4?s=100" width="100px;" alt="Nan.Y"/><br /><sub><b>Nan.Y</b></sub></a><br /><a href="#question-GreenLimeSia" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/hedaobaishui"><img src="https://avatars.githubusercontent.com/u/20534146?v=4?s=100" width="100px;" alt="Taisanai"/><br /><sub><b>Taisanai</b></sub></a><br /><a href="#question-hedaobaishui" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/primeoc"><img src="https://avatars.githubusercontent.com/u/75205487?v=4?s=100" width="100px;" alt="cameron"/><br /><sub><b>cameron</b></sub></a><br /><a href="#question-primeoc" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/zhrli"><img src="https://avatars.githubusercontent.com/u/11074703?v=4?s=100" width="100px;" alt="zhrli"/><br /><sub><b>zhrli</b></sub></a><br /><a href="#question-zhrli" title="Answering Questions">💬</a></td> </tr> <tr> <td align="center" valign="top" width="14.28%"><a href="https://github.com/najeeb-kazmi"><img src="https://avatars.githubusercontent.com/u/14131235?v=4?s=100" width="100px;" alt="Najeeb Kazmi"/><br /><sub><b>Najeeb Kazmi</b></sub></a><br /><a href="#question-najeeb-kazmi" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/TQRTQ"><img src="https://avatars.githubusercontent.com/u/29155385?v=4?s=100" width="100px;" alt="TQRTQ"/><br /><sub><b>TQRTQ</b></sub></a><br /><a href="#question-TQRTQ" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/viktor-bordiuzha-93b078211"><img src="https://avatars.githubusercontent.com/u/43813476?v=4?s=100" width="100px;" alt="Viktor Bordiuzha"/><br /><sub><b>Viktor Bordiuzha</b></sub></a><br /><a href="#example-victor30608" title="Examples">💡</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/agijsberts"><img src="https://avatars.githubusercontent.com/u/1579083?v=4?s=100" width="100px;" alt="agijsberts"/><br /><sub><b>agijsberts</b></sub></a><br /><a href="https://github.com/openclimatefix/skillful_nowcasting/commits?author=agijsberts" title="Code">💻</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/Mews"><img src="https://avatars.githubusercontent.com/u/60406199?v=4?s=100" width="100px;" alt="Mews"/><br /><sub><b>Mews</b></sub></a><br /><a href="https://github.com/openclimatefix/skillful_nowcasting/commits?author=Mews" title="Tests">⚠️</a></td> </tr> </tbody> </table> <!-- markdownlint-restore --> <!-- prettier-ignore-end --> <!-- ALL-CONTRIBUTORS-LIST:END -->This project follows the all-contributors specification. Contributions of any kind welcome!
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高 效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略 等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号