
DGMR模型,革新短期天气预报技术
本项目是DeepMind的Skillful Nowcasting GAN深度生成模型(DGMR)的开源实现,专注于提高短期天气预报精度。基于PyTorch Lightning框架开发,严格遵循DeepMind公布的伪代码。项目集成了预训练模型,支持英国和美国的降水雷达数据,并通过HuggingFace Datasets简化了数据获取流程。DGMR模型展示了生成高质量短期天气预报的能力,为气象预报领域带来了创新。
Implementation of DeepMind's Skillful Nowcasting GAN Deep Generative Model of Radar (DGMR) (https://arxiv.org/abs/2104.00954) in PyTorch Lightning.
This implementation matches as much as possible the pseudocode released by DeepMind. Each of the components (Sampler, Context conditioning stack, Latent conditioning stack, Discriminator, and Generator) are normal PyTorch modules. As the model training is a bit complicated, the overall architecture is wrapped in PyTorch Lightning.
The default parameters match what is written in the paper.
Clone the repository, then run
pip install -r requirements.txt pip install -e .
Alternatively, you can also install through pip install dgmr
The open-sourced UK training dataset has been mirrored to HuggingFace Datasets! This should enable training the original architecture on the original data for reproducing the results from the paper. The full dataset is roughly 1TB in size, and unfortunately, streaming the data from HF Datasets doesn't seem to work, so it has to be cached locally. We have added the sample dataset as well though, which can be directly streamed from GCP without costs.
The dataset can be loaded with
from datasets import load_dataset dataset = load_dataset("openclimatefix/nimrod-uk-1km")
For now, only the sample dataset support streaming in, as its data files are hosted on GCP, not HF, so it can be used with:
from datasets import load_dataset dataset = load_dataset("openclimatefix/nimrod-uk-1km", "sample", streaming=True)
The authors also used MRMS US precipitation radar data as another comparison. While that dataset was not released, the MRMS data is publicly available, and we have made that data available on HuggingFace Datasets as well here. This dataset is the raw 3500x7000 contiguous US MRMS data for 2016 through May 2022, is a few hundred GBs in size, with sporadic updates to more recent data planned. This dataset is in Zarr format, and can be streamed without caching locally through
from datasets import load_dataset dataset = load_dataset("openclimatefix/mrms", "default_sequence", streaming=True)
This steams the data with 24 timesteps per example, just like the UK DGMR dataset. To get individual MRMS frames, instead of a sequence, this can be achieved through
from datasets import load_dataset dataset = load_dataset("openclimatefix/mrms", "default", streaming=True)
Pretrained weights are be available through HuggingFace Hub, currently weights trained on the sample dataset. The whole DGMR model or different components can be loaded as the following:
from dgmr import DGMR, Sampler, Generator, Discriminator, LatentConditioningStack, ContextConditioningStack model = DGMR.from_pretrained("openclimatefix/dgmr") sampler = Sampler.from_pretrained("openclimatefix/dgmr-sampler") discriminator = Discriminator.from_pretrained("openclimatefix/dgmr-discriminator") latent_stack = LatentConditioningStack.from_pretrained("openclimatefix/dgmr-latent-conditioning-stack") context_stack = ContextConditioningStack.from_pretrained("openclimatefix/dgmr-context-conditioning-stack") generator = Generator(conditioning_stack=context_stack, latent_stack=latent_stack, sampler=sampler)
from dgmr import DGMR import torch.nn.functional as F import torch model = DGMR( forecast_steps=4, input_channels=1, output_shape=128, latent_channels=384, context_channels=192, num_samples=3, ) x = torch.rand((2, 4, 1, 128, 128)) out = model(x) y = torch.rand((2, 4, 1, 128, 128)) loss = F.mse_loss(y, out) loss.backward()
@article{ravuris2021skillful,
author={Suman Ravuri and Karel Lenc and Matthew Willson and Dmitry Kangin and Remi Lam and Piotr Mirowski and Megan Fitzsimons and Maria Athanassiadou and Sheleem Kashem and Sam Madge and Rachel Prudden Amol Mandhane and Aidan Clark and Andrew Brock and Karen Simonyan and Raia Hadsell and Niall Robinson Ellen Clancy and Alberto Arribas† and Shakir Mohamed},
title={Skillful Precipitation Nowcasting using Deep Generative Models of Radar},
journal={Nature},
volume={597},
pages={672--677},
year={2021}
}
Thanks goes to these wonderful people (emoji key):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tbody> <tr> <td align="center" valign="top" width="14.28%"><a href="https://www.jacobbieker.com"><img src="https://avatars.githubusercontent.com/u/7170359?v=4?s=100" width="100px;" alt="Jacob Bieker"/><br /><sub><b>Jacob Bieker</b></sub></a><br /><a href="https://github.com/openclimatefix/skillful_nowcasting/commits?author=jacobbieker" title="Code">💻</a></td> <td align="center" valign="top" width="14.28%"><a href="http://johmathe.name/"><img src="https://avatars.githubusercontent.com/u/467643?v=4?s=100" width="100px;" alt="Johan Mathe"/><br /><sub><b>Johan Mathe</b></sub></a><br /><a href="https://github.com/openclimatefix/skillful_nowcasting/commits?author=johmathe" title="Code">💻</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/ZHANGZ1YUE"><img src="https://avatars.githubusercontent.com/u/93907996?v=4?s=100" width="100px;" alt="Z1YUE"/><br /><sub><b>Z1YUE</b></sub></a><br /><a href="https://github.com/openclimatefix/skillful_nowcasting/issues?q=author%3AZHANGZ1YUE" title="Bug reports">🐛</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/GreenLimeSia"><img src="https://avatars.githubusercontent.com/u/28706611?v=4?s=100" width="100px;" alt="Nan.Y"/><br /><sub><b>Nan.Y</b></sub></a><br /><a href="#question-GreenLimeSia" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/hedaobaishui"><img src="https://avatars.githubusercontent.com/u/20534146?v=4?s=100" width="100px;" alt="Taisanai"/><br /><sub><b>Taisanai</b></sub></a><br /><a href="#question-hedaobaishui" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/primeoc"><img src="https://avatars.githubusercontent.com/u/75205487?v=4?s=100" width="100px;" alt="cameron"/><br /><sub><b>cameron</b></sub></a><br /><a href="#question-primeoc" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/zhrli"><img src="https://avatars.githubusercontent.com/u/11074703?v=4?s=100" width="100px;" alt="zhrli"/><br /><sub><b>zhrli</b></sub></a><br /><a href="#question-zhrli" title="Answering Questions">💬</a></td> </tr> <tr> <td align="center" valign="top" width="14.28%"><a href="https://github.com/najeeb-kazmi"><img src="https://avatars.githubusercontent.com/u/14131235?v=4?s=100" width="100px;" alt="Najeeb Kazmi"/><br /><sub><b>Najeeb Kazmi</b></sub></a><br /><a href="#question-najeeb-kazmi" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/TQRTQ"><img src="https://avatars.githubusercontent.com/u/29155385?v=4?s=100" width="100px;" alt="TQRTQ"/><br /><sub><b>TQRTQ</b></sub></a><br /><a href="#question-TQRTQ" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="14.28%"><a href="https://www.linkedin.com/in/viktor-bordiuzha-93b078211"><img src="https://avatars.githubusercontent.com/u/43813476?v=4?s=100" width="100px;" alt="Viktor Bordiuzha"/><br /><sub><b>Viktor Bordiuzha</b></sub></a><br /><a href="#example-victor30608" title="Examples">💡</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/agijsberts"><img src="https://avatars.githubusercontent.com/u/1579083?v=4?s=100" width="100px;" alt="agijsberts"/><br /><sub><b>agijsberts</b></sub></a><br /><a href="https://github.com/openclimatefix/skillful_nowcasting/commits?author=agijsberts" title="Code">💻</a></td> <td align="center" valign="top" width="14.28%"><a href="https://github.com/Mews"><img src="https://avatars.githubusercontent.com/u/60406199?v=4?s=100" width="100px;" alt="Mews"/><br /><sub><b>Mews</b></sub></a><br /><a href="https://github.com/openclimatefix/skillful_nowcasting/commits?author=Mews" title="Tests">⚠️</a></td> </tr> </tbody> </table> <!-- markdownlint-restore --> <!-- prettier-ignore-end --> <!-- ALL-CONTRIBUTORS-LIST:END -->This project follows the all-contributors specification. Contributions of any kind welcome!


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号