nyaggle

nyaggle

Kaggle和数据科学竞赛的Python工具库

nyaggle是一个面向数据科学竞赛的Python工具库,专注于实验跟踪、特征工程和模型验证。它提供实验追踪、集成学习、特征存储等功能,支持高级API进行交叉验证实验。该库还包含目标编码、BERT文本向量化等特征工程工具,以及对抗验证和时间序列分割等验证方法,是Kaggle等竞赛中的实用助手。

nyaggle特征工程实验追踪验证机器学习Github开源项目

nyaggle

GitHub Actions CI Status GitHub Actions CI Status Python Versions Documentation Status

Documentation | Slide (Japanese)

nyaggle is an utility library for Kaggle and offline competitions. It is particularly focused on experiment tracking, feature engineering, and validation.

  • nyaggle.ensemble - Averaging & stacking
  • nyaggle.experiment - Experiment tracking
  • nyaggle.feature_store - Lightweight feature storage using feather-format
  • nyaggle.features - sklearn-compatible features
  • nyaggle.hyper_parameters - Collection of GBDT hyper-parameters used in past Kaggle competitions
  • nyaggle.validation - Adversarial validation & sklearn-compatible CV splitters

Installation

You can install nyaggle via pip:

pip install nyaggle

Examples

Experiment Tracking

run_experiment() is a high-level API for experiments with cross validation. It outputs parameters, metrics, out of fold predictions, test predictions, feature importance, and submission.csv under the specified directory.

To enable mlflow tracking, include the optional with_mlflow=True parameter.

from sklearn.model_selection import train_test_split from nyaggle.experiment import run_experiment from nyaggle.testing import make_classification_df X, y = make_classification_df() X_train, X_test, y_train, y_test = train_test_split(X, y) params = { 'n_estimators': 1000, 'max_depth': 8 } result = run_experiment(params, X_train, y_train, X_test) # You can get outputs that are needed in data science competitions with 1 API print(result.test_prediction) # Test prediction in numpy array print(result.oof_prediction) # Out-of-fold prediction in numpy array print(result.models) # Trained models for each fold print(result.importance) # Feature importance for each fold print(result.metrics) # Evalulation metrics for each fold print(result.time) # Elapsed time print(result.submission_df) # The output dataframe saved as submission.csv # ...and all outputs have been saved under the logging directory (default: output/yyyymmdd_HHMMSS). # You can use it with mlflow and track your experiments through mlflow-ui result = run_experiment(params, X_train, y_train, X_test, with_mlflow=True)

nyaggle also has a low-level API which has similar interface to mlflow tracking and wandb.

from nyaggle.experiment import Experiment with Experiment(logging_directory='./output/') as exp: # log key-value pair as a parameter exp.log_param('lr', 0.01) exp.log_param('optimizer', 'adam') # log text exp.log('blah blah blah') # log metric exp.log_metric('CV', 0.85) # log numpy ndarray, pandas dafaframe and any artifacts exp.log_numpy('predicted', predicted) exp.log_dataframe('submission', sub, file_format='csv') exp.log_artifact('path-to-your-file')

Feature Engineering

Target Encoding with K-Fold

import pandas as pd import numpy as np from sklearn.model_selection import KFold from nyaggle.feature.category_encoder import TargetEncoder train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') all = pd.concat([train, test]).copy() cat_cols = [c for c in train.columns if train[c].dtype == np.object] target_col = 'y' kf = KFold(5) # Target encoding with K-fold te = TargetEncoder(kf.split(train)) # use fit/fit_transform to train data, then apply transform to test data train.loc[:, cat_cols] = te.fit_transform(train[cat_cols], train[target_col]) test.loc[:, cat_cols] = te.transform(test[cat_cols]) # ... or just call fit_transform to concatenated data all.loc[:, cat_cols] = te.fit_transform(all[cat_cols], all[cat_cols])

Text Vectorization using BERT

You need to install pytorch to your virtual environment to use BertSentenceVectorizer. MaCab and mecab-python3 are also required if you use the Japanese BERT model.

import pandas as pd from nyaggle.feature.nlp import BertSentenceVectorizer train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') all = pd.concat([train, test]).copy() text_cols = ['body'] target_col = 'y' group_col = 'user_id' # extract BERT-based sentence vector bv = BertSentenceVectorizer(text_columns=text_cols) text_vector = bv.fit_transform(train) # BERT + SVD, with cuda bv = BertSentenceVectorizer(text_columns=text_cols, use_cuda=True, n_components=40) text_vector_svd = bv.fit_transform(train) # Japanese BERT bv = BertSentenceVectorizer(text_columns=text_cols, lang='jp') japanese_text_vector = bv.fit_transform(train)

Adversarial Validation

import pandas as pd from nyaggle.validation import adversarial_validate train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') auc, importance = adversarial_validate(train, test, importance_type='gain')

Validation Splitters

nyaggle provides a set of validation splitters that are compatible with sklearn.

import pandas as pd from sklearn.model_selection import cross_validate, KFold from nyaggle.validation import TimeSeriesSplit, Take, Skip, Nth train = pd.read_csv('train.csv', parse_dates='dt') # time-series split ts = TimeSeriesSplit(train['dt']) ts.add_fold(train_interval=('2019-01-01', '2019-01-10'), test_interval=('2019-01-10', '2019-01-20')) ts.add_fold(train_interval=('2019-01-06', '2019-01-15'), test_interval=('2019-01-15', '2019-01-25')) cross_validate(..., cv=ts) # take the first 3 folds out of 10 cross_validate(..., cv=Take(3, KFold(10))) # skip the first 3 folds, and evaluate the remaining 7 folds cross_validate(..., cv=Skip(3, KFold(10))) # evaluate 1st fold cross_validate(..., cv=Nth(1, ts))

Other Awesome Repositories

Here is a list of awesome repositories that provide general utility functions for data science competitions. Please let me know if you have another one :)

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多