Documentation | Slide (Japanese)
nyaggle is an utility library for Kaggle and offline competitions. It is particularly focused on experiment tracking, feature engineering, and validation.
You can install nyaggle via pip:
pip install nyaggle
run_experiment() is a high-level API for experiments with cross validation.
It outputs parameters, metrics, out of fold predictions, test predictions,
feature importance, and submission.csv under the specified directory.
To enable mlflow tracking, include the optional with_mlflow=True parameter.
from sklearn.model_selection import train_test_split from nyaggle.experiment import run_experiment from nyaggle.testing import make_classification_df X, y = make_classification_df() X_train, X_test, y_train, y_test = train_test_split(X, y) params = { 'n_estimators': 1000, 'max_depth': 8 } result = run_experiment(params, X_train, y_train, X_test) # You can get outputs that are needed in data science competitions with 1 API print(result.test_prediction) # Test prediction in numpy array print(result.oof_prediction) # Out-of-fold prediction in numpy array print(result.models) # Trained models for each fold print(result.importance) # Feature importance for each fold print(result.metrics) # Evalulation metrics for each fold print(result.time) # Elapsed time print(result.submission_df) # The output dataframe saved as submission.csv # ...and all outputs have been saved under the logging directory (default: output/yyyymmdd_HHMMSS). # You can use it with mlflow and track your experiments through mlflow-ui result = run_experiment(params, X_train, y_train, X_test, with_mlflow=True)
nyaggle also has a low-level API which has similar interface to mlflow tracking and wandb.
from nyaggle.experiment import Experiment with Experiment(logging_directory='./output/') as exp: # log key-value pair as a parameter exp.log_param('lr', 0.01) exp.log_param('optimizer', 'adam') # log text exp.log('blah blah blah') # log metric exp.log_metric('CV', 0.85) # log numpy ndarray, pandas dafaframe and any artifacts exp.log_numpy('predicted', predicted) exp.log_dataframe('submission', sub, file_format='csv') exp.log_artifact('path-to-your-file')
import pandas as pd import numpy as np from sklearn.model_selection import KFold from nyaggle.feature.category_encoder import TargetEncoder train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') all = pd.concat([train, test]).copy() cat_cols = [c for c in train.columns if train[c].dtype == np.object] target_col = 'y' kf = KFold(5) # Target encoding with K-fold te = TargetEncoder(kf.split(train)) # use fit/fit_transform to train data, then apply transform to test data train.loc[:, cat_cols] = te.fit_transform(train[cat_cols], train[target_col]) test.loc[:, cat_cols] = te.transform(test[cat_cols]) # ... or just call fit_transform to concatenated data all.loc[:, cat_cols] = te.fit_transform(all[cat_cols], all[cat_cols])
You need to install pytorch to your virtual environment to use BertSentenceVectorizer. MaCab and mecab-python3 are also required if you use the Japanese BERT model.
import pandas as pd from nyaggle.feature.nlp import BertSentenceVectorizer train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') all = pd.concat([train, test]).copy() text_cols = ['body'] target_col = 'y' group_col = 'user_id' # extract BERT-based sentence vector bv = BertSentenceVectorizer(text_columns=text_cols) text_vector = bv.fit_transform(train) # BERT + SVD, with cuda bv = BertSentenceVectorizer(text_columns=text_cols, use_cuda=True, n_components=40) text_vector_svd = bv.fit_transform(train) # Japanese BERT bv = BertSentenceVectorizer(text_columns=text_cols, lang='jp') japanese_text_vector = bv.fit_transform(train)
import pandas as pd from nyaggle.validation import adversarial_validate train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') auc, importance = adversarial_validate(train, test, importance_type='gain')
nyaggle provides a set of validation splitters that are compatible with sklearn.
import pandas as pd from sklearn.model_selection import cross_validate, KFold from nyaggle.validation import TimeSeriesSplit, Take, Skip, Nth train = pd.read_csv('train.csv', parse_dates='dt') # time-series split ts = TimeSeriesSplit(train['dt']) ts.add_fold(train_interval=('2019-01-01', '2019-01-10'), test_interval=('2019-01-10', '2019-01-20')) ts.add_fold(train_interval=('2019-01-06', '2019-01-15'), test_interval=('2019-01-15', '2019-01-25')) cross_validate(..., cv=ts) # take the first 3 folds out of 10 cross_validate(..., cv=Take(3, KFold(10))) # skip the first 3 folds, and evaluate the remaining 7 folds cross_validate(..., cv=Skip(3, KFold(10))) # evaluate 1st fold cross_validate(..., cv=Nth(1, ts))
Here is a list of awesome repositories that provide general utility functions for data science competitions. Please let me know if you have another one :)


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号