mit-b4

mit-b4

使用SegFormer预训练模型提升语义分割效率

此项目提供SegFormer的b4-sized预训练模型,具有分层Transformer和轻量级MLP解码头,在ADE20K和Cityscapes等基准上展现出色性能。经过ImageNet-1k预训练的SegFormer可用于下游任务微调,满足多种应用需求。用户可在[模型库](https://huggingface.co/models?other=segformer)中根据任务需求选择合适版本,优化图像分割效果。

Hugging FaceImageNetTransformer开源项目模型Huggingface语义分割GithubSegFormer

mit-b4项目介绍

项目背景

mit-b4项目是基于SegFormer模型的一个重要组件,专注于图像的语义分割任务。语义分割是一种计算机视觉技术,其目的是对图像中的像素进行分类,从而识别出不同的对象类别。如同给照片中的每一个像素贴上所对应的标签,从而实现更精确的图像识别。这一技术广泛应用于自动驾驶、医学影像分析和图像编辑等领域。

SegFormer模型简介

SegFormer模型由Xie等人提出,是一种结合了Transformer架构和全MLP(多层感知机)解码头的轻量级模型。其独特之处在于,它通过层次化的Transformer编码器达成优异的语义分割效果。在Imagenet-1k数据集上的预训练大大提升了模型的初始表现,然后再通过下游数据集进行微调。项目中提供的mit-b4便是这个层次化Transformer的预训练版本,用户可以在此基础上进行进一步的微调,以适应具体的应用场景。

预期用途及局限性

mit-b4模型主要用于语义分割任务的微调过程。用户可以访问模型中心查找已经微调好的模型版本,以用于自己感兴趣的任务。不过,需要注意的是,这个项目仅提供了预训练的Transformer,而具体应用仍需根据特定任务进行进一步的微调。

使用指南

下列示例代码展示了如何使用mit-b4模型对COCO 2017数据集中的图像进行分类:

from transformers import SegformerFeatureExtractor, SegformerForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/mit-b4") model = SegformerForImageClassification.from_pretrained("nvidia/mit-b4") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx])

通过上述代码片段,用户能够获取COCO数据集中图片的分类结果。更多使用示例和文档,请参考官方文档

授权许可

有关该模型的授权许可信息,可以通过此链接进行查看。使用前建议仔细阅读相关许可内容,以确保合规使用。

参考文献

有关SegFormer的学术详细信息,请参见以下引文:

@article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多