mit-b4

mit-b4

使用SegFormer预训练模型提升语义分割效率

此项目提供SegFormer的b4-sized预训练模型,具有分层Transformer和轻量级MLP解码头,在ADE20K和Cityscapes等基准上展现出色性能。经过ImageNet-1k预训练的SegFormer可用于下游任务微调,满足多种应用需求。用户可在[模型库](https://huggingface.co/models?other=segformer)中根据任务需求选择合适版本,优化图像分割效果。

Hugging FaceImageNetTransformer开源项目模型Huggingface语义分割GithubSegFormer

mit-b4项目介绍

项目背景

mit-b4项目是基于SegFormer模型的一个重要组件,专注于图像的语义分割任务。语义分割是一种计算机视觉技术,其目的是对图像中的像素进行分类,从而识别出不同的对象类别。如同给照片中的每一个像素贴上所对应的标签,从而实现更精确的图像识别。这一技术广泛应用于自动驾驶、医学影像分析和图像编辑等领域。

SegFormer模型简介

SegFormer模型由Xie等人提出,是一种结合了Transformer架构和全MLP(多层感知机)解码头的轻量级模型。其独特之处在于,它通过层次化的Transformer编码器达成优异的语义分割效果。在Imagenet-1k数据集上的预训练大大提升了模型的初始表现,然后再通过下游数据集进行微调。项目中提供的mit-b4便是这个层次化Transformer的预训练版本,用户可以在此基础上进行进一步的微调,以适应具体的应用场景。

预期用途及局限性

mit-b4模型主要用于语义分割任务的微调过程。用户可以访问模型中心查找已经微调好的模型版本,以用于自己感兴趣的任务。不过,需要注意的是,这个项目仅提供了预训练的Transformer,而具体应用仍需根据特定任务进行进一步的微调。

使用指南

下列示例代码展示了如何使用mit-b4模型对COCO 2017数据集中的图像进行分类:

from transformers import SegformerFeatureExtractor, SegformerForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/mit-b4") model = SegformerForImageClassification.from_pretrained("nvidia/mit-b4") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx])

通过上述代码片段,用户能够获取COCO数据集中图片的分类结果。更多使用示例和文档,请参考官方文档

授权许可

有关该模型的授权许可信息,可以通过此链接进行查看。使用前建议仔细阅读相关许可内容,以确保合规使用。

参考文献

有关SegFormer的学术详细信息,请参见以下引文:

@article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多