numalogic

numalogic

开源时间序列分析和异常检测框架

numalogic是一个开源的机器学习框架,专注于运营数据分析和AIOps。该框架集成了多种ML模型和算法,提供预测性数据分析、模型选择、数据处理和特征提取功能。numalogic适用于部署失败检测、系统故障识别、欺诈检测等场景。它支持实时训练,可根据输入数据自动更新模型,适合构建持续运行的ML平台。numalogic设计简洁,易于使用和扩展,为数据分析提供了灵活的解决方案。

numalogic机器学习时间序列分析异常检测AIOpsGithub开源项目

numalogic

Build codecov black License slack Release Version

Background

Numalogic is a collection of ML models and algorithms for operation data analytics and AIOps. At Intuit, we use Numalogic at scale for continuous real-time data enrichment including anomaly scoring. We assign an anomaly score (ML inference) to any time-series datum/event/message we receive on our streaming platform (say, Kafka). 95% of our data sets are time-series, and we have a complex flowchart to execute ML inference on our high throughput sources. We run multiple models on the same datum, say a model that is sensitive towards +ve sentiments, another more tuned towards -ve sentiments, and another optimized for neutral sentiments. We also have a couple of ML models trained for the same data source to provide more accurate scores based on the data density in our model store. An ensemble of models is required because some composite keys in the data tend to be less dense than others, e.g., forgot-password interaction is less frequent than a status check interaction. At runtime, for each datum that arrives, models are picked based on a conditional forwarding filter set on the data density. ML engineers need to worry about only their inference container; they do not have to worry about data movement and quality assurance.

Numalogic realtime training

For an always-on ML platform, the key requirement is the ability to train or retrain models automatically based on the incoming messages. The composite key built at per message runtime looks for a matching model, and if the model turns out to be stale or missing, an automatic retriggering is applied. The conditional forwarding feature of the platform improves the development velocity of the ML developer when they have to make a decision whether to forward the result further or drop it after a trigger request.

Key Features

  1. Ease of use: simple and efficient tools for predictive data analytics
  2. Reusability: all the functionalities can be re-used in various contexts
  3. Model selection: easy to compare, validate, fine-tune and choose the model that works best with each data set
  4. Data processing: readily available feature extraction, scaling, transforming and normalization tools
  5. Extensibility: adding your own functions or extending over the existing capabilities
  6. Model Storage: out-of-the-box support for MLFlow and support for other model ML lifecycle management tools

Use Cases

  1. Deployment failure detection
  2. System failure detection for node failures or crashes
  3. Fraud detection
  4. Network intrusion detection
  5. Forecasting on time series data

Getting Started

For set-up information and running your first pipeline using numalogic, please see our getting started guide.

Installation

Numalogic requires Python 3.8 or higher.

Prerequisites

Numalogic needs PyTorch and PyTorch Lightning to work. But since these packages are platform dependendent, they are not included in the numalogic package itself. Kindly install them first.

Numalogic supports pytorch versions 2.0.0 and above.

numalogic can be installed using pip.

pip install numalogic

If using mlflow for model registry, install using:

pip install numalogic[mlflow]

Build locally

  1. Install Poetry:
    curl -sSL https://install.python-poetry.org | python3 -
    
  2. To activate virtual env:
    poetry shell
    
  3. To install dependencies:
    poetry install --with dev,torch
    
    If extra dependencies are needed:
    poetry install --all-extras
    
  4. To run unit tests:
    make test
    
  5. To format code style using black and ruff:
    make lint
    
  6. Setup pre-commit hooks:
    pre-commit install

Contributing

We would love contributions in the numalogic project in one of the following (but not limited to) areas:

  • Adding new time series anomaly detection models
  • Making it easier to add user's custom models
  • Support for additional model registry frameworks

For contribution guildelines please refer here.

Resources

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多