高性能JSON处理库 适用于现代C++
JSON for Modern C++是 专为现代C++设计的JSON处理库。它提供直观语法、简单集成和严格测试,支持JSON作为一等公民数据类型。该库实现序列化/反序列化、STL风格访问和任意类型转换,还支持JSON指针、补丁和二进制格式。这是一个全面高效的JSON解决方案,适用于C++开发者。
json
objects from JSON literalsThere are myriads of JSON libraries out there, and each may even have its reason to exist. Our class had these design goals:
Intuitive syntax. In languages such as Python, JSON feels like a first class data type. We used all the operator magic of modern C++ to achieve the same feeling in your code. Check out the examples below and you'll know what I mean.
Trivial integration. Our whole code consists of a single header file json.hpp
. That's it. No library, no subproject, no dependencies, no complex build system. The class is written in vanilla C++11. All in all, everything should require no adjustment of your compiler flags or project settings.
Serious testing. Our code is heavily unit-tested and covers 100% of the code, including all exceptional behavior. Furthermore, we checked with Valgrind and the Clang Sanitizers that there are no memory leaks. Google OSS-Fuzz additionally runs fuzz tests against all parsers 24/7, effectively executing billions of tests so far. To maintain high quality, the project is following the Core Infrastructure Initiative (CII) best practices.
Other aspects were not so important to us:
Memory efficiency. Each JSON object has an overhead of one pointer (the maximal size of a union) and one enumeration element (1 byte). The default generalization uses the following C++ data types: std::string
for strings, int64_t
, uint64_t
or double
for numbers, std::map
for objects, std::vector
for arrays, and bool
for Booleans. However, you can template the generalized class basic_json
to your needs.
Speed. There are certainly faster JSON libraries out there. However, if your goal is to speed up your development by adding JSON support with a single header, then this library is the way to go. If you know how to use a std::vector
or std::map
, you are already set.
See the contribution guidelines for more information.
You can sponsor this library at GitHub Sponsors.
Thanks everyone!
:question: If you have a question, please check if it is already answered in the FAQ or the Q&A section. If not, please ask a new question there.
:books: If you want to learn more about how to use the library, check out the rest of the README, have a look at code examples, or browse through the help pages.
:construction: If you want to understand the API better, check out the API Reference.
:bug: If you found a bug, please check the FAQ if it is a known issue or the result of a design decision. Please also have a look at the issue list before you create a new issue. Please provide as much information as possible to help us understand and reproduce your issue.
There is also a docset for the documentation browsers Dash, Velocity, and Zeal that contains the full documentation as offline resource.
Here are some examples to give you an idea how to use the class.
Beside the examples below, you may want to:
→ Check the documentation
→ Browse the standalone example files
Every API function (documented in the API Documentation) has a corresponding standalone example file. For example, the emplace()
function has a matching emplace.cpp example file.
The json
class provides an API for manipulating a JSON value. To create a json
object by reading a JSON file:
#include <fstream> #include <nlohmann/json.hpp> using json = nlohmann::json; // ... std::ifstream f("example.json"); json data = json::parse(f);
json
objects from JSON literalsAssume you want to create hard-code this literal JSON value in a file, as a json
object:
{ "pi": 3.141, "happy": true }
There are various options:
// Using (raw) string literals and json::parse json ex1 = json::parse(R"( { "pi": 3.141, "happy": true } )"); // Using user-defined (raw) string literals using namespace nlohmann::literals; json ex2 = R"( { "pi": 3.141, "happy": true } )"_json; // Using initializer lists json ex3 = { {"happy", true}, {"pi", 3.141}, };
Here are some examples to give you an idea how to use the class.
Assume you want to create the JSON object
{ "pi": 3.141, "happy": true, "name": "Niels", "nothing": null, "answer": { "everything": 42 }, "list": [1, 0, 2], "object": { "currency": "USD", "value": 42.99 } }
With this library, you could write:
// create an empty structure (null) json j; // add a number that is stored as double (note the implicit conversion of j to an object) j["pi"] = 3.141; // add a Boolean that is stored as bool j["happy"] = true; // add a string that is stored as std::string j["name"] = "Niels"; // add another null object by passing nullptr j["nothing"] = nullptr; // add an object inside the object j["answer"]["everything"] = 42; // add an array that is stored as std::vector (using an initializer list) j["list"] = { 1, 0, 2 }; // add another object (using an initializer list of pairs) j["object"] = { {"currency", "USD"}, {"value", 42.99} }; // instead, you could also write (which looks very similar to the JSON above) json j2 = { {"pi", 3.141}, {"happy", true}, {"name", "Niels"}, {"nothing", nullptr}, {"answer", { {"everything", 42} }}, {"list", {1, 0, 2}}, {"object", { {"currency", "USD"}, {"value", 42.99} }} };
Note that in all these cases, you never need to "tell" the compiler which JSON value type you want to use. If you want to be explicit or express some edge cases, the functions json::array()
and json::object()
will help:
// a way to express the empty array [] json empty_array_explicit = json::array(); // ways to express the empty object {} json empty_object_implicit = json({}); json empty_object_explicit = json::object(); // a way to express an _array_ of key/value pairs [["currency", "USD"], ["value", 42.99]] json array_not_object = json::array({ {"currency", "USD"}, {"value", 42.99} });
You can create a JSON value (deserialization) by appending _json
to a string literal:
// create object from string literal json j = "{ \"happy\": true, \"pi\": 3.141 }"_json; // or even nicer with a raw string literal auto j2 = R"( { "happy": true, "pi": 3.141 } )"_json;
Note that without appending the _json
suffix, the passed string literal is not parsed, but just used as JSON string
value. That is, json j = "{ \"happy\": true, \"pi\": 3.141 }"
would just store the string
"{ "happy": true, "pi": 3.141 }"
rather than parsing the actual object.
The string literal should be brought into scope with using namespace nlohmann::literals;
(see json::parse()
).
The above example can also be expressed explicitly using json::parse()
:
// parse explicitly auto j3 = json::parse(R"({"happy": true, "pi": 3.141})");
You can also get a string representation of a JSON value (serialize):
// explicit conversion to string std::string s = j.dump(); // {"happy":true,"pi":3.141} // serialization with pretty printing // pass in the amount of spaces to indent std::cout << j.dump(4) << std::endl; // { // "happy": true, // "pi": 3.141 // }
Note the difference between serialization and assignment:
// store a string in a JSON value json j_string = "this is a string"; // retrieve the string value auto cpp_string = j_string.template get<std::string>(); // retrieve the string value (alternative when a variable already exists) std::string cpp_string2; j_string.get_to(cpp_string2); // retrieve the serialized value (explicit JSON serialization) std::string serialized_string = j_string.dump(); // output of original string std::cout << cpp_string << " == " << cpp_string2 << " == " << j_string.template get<std::string>() <<
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合 各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球 ,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日 常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号