json

json

高性能JSON处理库 适用于现代C++

JSON for Modern C++是专为现代C++设计的JSON处理库。它提供直观语法、简单集成和严格测试,支持JSON作为一等公民数据类型。该库实现序列化/反序列化、STL风格访问和任意类型转换,还支持JSON指针、补丁和二进制格式。这是一个全面高效的JSON解决方案,适用于C++开发者。

JSONC++序列化解析STLGithub开源项目

JSON for Modern C++

Build Status Ubuntu macOS Windows Coverage Status Coverity Scan Build Status Codacy Badge Cirrus CI Fuzzing Status Try online Documentation GitHub license GitHub Releases Vcpkg Version Packaging status GitHub Downloads GitHub Issues Average time to resolve an issue CII Best Practices GitHub Sponsors REUSE status Discord

Design goals

There are myriads of JSON libraries out there, and each may even have its reason to exist. Our class had these design goals:

  • Intuitive syntax. In languages such as Python, JSON feels like a first class data type. We used all the operator magic of modern C++ to achieve the same feeling in your code. Check out the examples below and you'll know what I mean.

  • Trivial integration. Our whole code consists of a single header file json.hpp. That's it. No library, no subproject, no dependencies, no complex build system. The class is written in vanilla C++11. All in all, everything should require no adjustment of your compiler flags or project settings.

  • Serious testing. Our code is heavily unit-tested and covers 100% of the code, including all exceptional behavior. Furthermore, we checked with Valgrind and the Clang Sanitizers that there are no memory leaks. Google OSS-Fuzz additionally runs fuzz tests against all parsers 24/7, effectively executing billions of tests so far. To maintain high quality, the project is following the Core Infrastructure Initiative (CII) best practices.

Other aspects were not so important to us:

  • Memory efficiency. Each JSON object has an overhead of one pointer (the maximal size of a union) and one enumeration element (1 byte). The default generalization uses the following C++ data types: std::string for strings, int64_t, uint64_t or double for numbers, std::map for objects, std::vector for arrays, and bool for Booleans. However, you can template the generalized class basic_json to your needs.

  • Speed. There are certainly faster JSON libraries out there. However, if your goal is to speed up your development by adding JSON support with a single header, then this library is the way to go. If you know how to use a std::vector or std::map, you are already set.

See the contribution guidelines for more information.

Sponsors

You can sponsor this library at GitHub Sponsors.

:raising_hand: Priority Sponsor

:label: Named Sponsors

Thanks everyone!

Support

:question: If you have a question, please check if it is already answered in the FAQ or the Q&A section. If not, please ask a new question there.

:books: If you want to learn more about how to use the library, check out the rest of the README, have a look at code examples, or browse through the help pages.

:construction: If you want to understand the API better, check out the API Reference.

:bug: If you found a bug, please check the FAQ if it is a known issue or the result of a design decision. Please also have a look at the issue list before you create a new issue. Please provide as much information as possible to help us understand and reproduce your issue.

There is also a docset for the documentation browsers Dash, Velocity, and Zeal that contains the full documentation as offline resource.

Examples

Here are some examples to give you an idea how to use the class.

Beside the examples below, you may want to:

→ Check the documentation
→ Browse the standalone example files

Every API function (documented in the API Documentation) has a corresponding standalone example file. For example, the emplace() function has a matching emplace.cpp example file.

Read JSON from a file

The json class provides an API for manipulating a JSON value. To create a json object by reading a JSON file:

#include <fstream> #include <nlohmann/json.hpp> using json = nlohmann::json; // ... std::ifstream f("example.json"); json data = json::parse(f);

Creating json objects from JSON literals

Assume you want to create hard-code this literal JSON value in a file, as a json object:

{ "pi": 3.141, "happy": true }

There are various options:

// Using (raw) string literals and json::parse json ex1 = json::parse(R"( { "pi": 3.141, "happy": true } )"); // Using user-defined (raw) string literals using namespace nlohmann::literals; json ex2 = R"( { "pi": 3.141, "happy": true } )"_json; // Using initializer lists json ex3 = { {"happy", true}, {"pi", 3.141}, };

JSON as first-class data type

Here are some examples to give you an idea how to use the class.

Assume you want to create the JSON object

{ "pi": 3.141, "happy": true, "name": "Niels", "nothing": null, "answer": { "everything": 42 }, "list": [1, 0, 2], "object": { "currency": "USD", "value": 42.99 } }

With this library, you could write:

// create an empty structure (null) json j; // add a number that is stored as double (note the implicit conversion of j to an object) j["pi"] = 3.141; // add a Boolean that is stored as bool j["happy"] = true; // add a string that is stored as std::string j["name"] = "Niels"; // add another null object by passing nullptr j["nothing"] = nullptr; // add an object inside the object j["answer"]["everything"] = 42; // add an array that is stored as std::vector (using an initializer list) j["list"] = { 1, 0, 2 }; // add another object (using an initializer list of pairs) j["object"] = { {"currency", "USD"}, {"value", 42.99} }; // instead, you could also write (which looks very similar to the JSON above) json j2 = { {"pi", 3.141}, {"happy", true}, {"name", "Niels"}, {"nothing", nullptr}, {"answer", { {"everything", 42} }}, {"list", {1, 0, 2}}, {"object", { {"currency", "USD"}, {"value", 42.99} }} };

Note that in all these cases, you never need to "tell" the compiler which JSON value type you want to use. If you want to be explicit or express some edge cases, the functions json::array() and json::object() will help:

// a way to express the empty array [] json empty_array_explicit = json::array(); // ways to express the empty object {} json empty_object_implicit = json({}); json empty_object_explicit = json::object(); // a way to express an _array_ of key/value pairs [["currency", "USD"], ["value", 42.99]] json array_not_object = json::array({ {"currency", "USD"}, {"value", 42.99} });

Serialization / Deserialization

To/from strings

You can create a JSON value (deserialization) by appending _json to a string literal:

// create object from string literal json j = "{ \"happy\": true, \"pi\": 3.141 }"_json; // or even nicer with a raw string literal auto j2 = R"( { "happy": true, "pi": 3.141 } )"_json;

Note that without appending the _json suffix, the passed string literal is not parsed, but just used as JSON string value. That is, json j = "{ \"happy\": true, \"pi\": 3.141 }" would just store the string "{ "happy": true, "pi": 3.141 }" rather than parsing the actual object.

The string literal should be brought into scope with using namespace nlohmann::literals; (see json::parse()).

The above example can also be expressed explicitly using json::parse():

// parse explicitly auto j3 = json::parse(R"({"happy": true, "pi": 3.141})");

You can also get a string representation of a JSON value (serialize):

// explicit conversion to string std::string s = j.dump(); // {"happy":true,"pi":3.141} // serialization with pretty printing // pass in the amount of spaces to indent std::cout << j.dump(4) << std::endl; // { // "happy": true, // "pi": 3.141 // }

Note the difference between serialization and assignment:

// store a string in a JSON value json j_string = "this is a string"; // retrieve the string value auto cpp_string = j_string.template get<std::string>(); // retrieve the string value (alternative when a variable already exists) std::string cpp_string2; j_string.get_to(cpp_string2); // retrieve the serialized value (explicit JSON serialization) std::string serialized_string = j_string.dump(); // output of original string std::cout << cpp_string << " == " << cpp_string2 << " == " << j_string.template get<std::string>() <<

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多