json

json

高性能JSON处理库 适用于现代C++

JSON for Modern C++是专为现代C++设计的JSON处理库。它提供直观语法、简单集成和严格测试,支持JSON作为一等公民数据类型。该库实现序列化/反序列化、STL风格访问和任意类型转换,还支持JSON指针、补丁和二进制格式。这是一个全面高效的JSON解决方案,适用于C++开发者。

JSONC++序列化解析STLGithub开源项目

JSON for Modern C++

Build Status Ubuntu macOS Windows Coverage Status Coverity Scan Build Status Codacy Badge Cirrus CI Fuzzing Status Try online Documentation GitHub license GitHub Releases Vcpkg Version Packaging status GitHub Downloads GitHub Issues Average time to resolve an issue CII Best Practices GitHub Sponsors REUSE status Discord

Design goals

There are myriads of JSON libraries out there, and each may even have its reason to exist. Our class had these design goals:

  • Intuitive syntax. In languages such as Python, JSON feels like a first class data type. We used all the operator magic of modern C++ to achieve the same feeling in your code. Check out the examples below and you'll know what I mean.

  • Trivial integration. Our whole code consists of a single header file json.hpp. That's it. No library, no subproject, no dependencies, no complex build system. The class is written in vanilla C++11. All in all, everything should require no adjustment of your compiler flags or project settings.

  • Serious testing. Our code is heavily unit-tested and covers 100% of the code, including all exceptional behavior. Furthermore, we checked with Valgrind and the Clang Sanitizers that there are no memory leaks. Google OSS-Fuzz additionally runs fuzz tests against all parsers 24/7, effectively executing billions of tests so far. To maintain high quality, the project is following the Core Infrastructure Initiative (CII) best practices.

Other aspects were not so important to us:

  • Memory efficiency. Each JSON object has an overhead of one pointer (the maximal size of a union) and one enumeration element (1 byte). The default generalization uses the following C++ data types: std::string for strings, int64_t, uint64_t or double for numbers, std::map for objects, std::vector for arrays, and bool for Booleans. However, you can template the generalized class basic_json to your needs.

  • Speed. There are certainly faster JSON libraries out there. However, if your goal is to speed up your development by adding JSON support with a single header, then this library is the way to go. If you know how to use a std::vector or std::map, you are already set.

See the contribution guidelines for more information.

Sponsors

You can sponsor this library at GitHub Sponsors.

:raising_hand: Priority Sponsor

:label: Named Sponsors

Thanks everyone!

Support

:question: If you have a question, please check if it is already answered in the FAQ or the Q&A section. If not, please ask a new question there.

:books: If you want to learn more about how to use the library, check out the rest of the README, have a look at code examples, or browse through the help pages.

:construction: If you want to understand the API better, check out the API Reference.

:bug: If you found a bug, please check the FAQ if it is a known issue or the result of a design decision. Please also have a look at the issue list before you create a new issue. Please provide as much information as possible to help us understand and reproduce your issue.

There is also a docset for the documentation browsers Dash, Velocity, and Zeal that contains the full documentation as offline resource.

Examples

Here are some examples to give you an idea how to use the class.

Beside the examples below, you may want to:

→ Check the documentation
→ Browse the standalone example files

Every API function (documented in the API Documentation) has a corresponding standalone example file. For example, the emplace() function has a matching emplace.cpp example file.

Read JSON from a file

The json class provides an API for manipulating a JSON value. To create a json object by reading a JSON file:

#include <fstream> #include <nlohmann/json.hpp> using json = nlohmann::json; // ... std::ifstream f("example.json"); json data = json::parse(f);

Creating json objects from JSON literals

Assume you want to create hard-code this literal JSON value in a file, as a json object:

{ "pi": 3.141, "happy": true }

There are various options:

// Using (raw) string literals and json::parse json ex1 = json::parse(R"( { "pi": 3.141, "happy": true } )"); // Using user-defined (raw) string literals using namespace nlohmann::literals; json ex2 = R"( { "pi": 3.141, "happy": true } )"_json; // Using initializer lists json ex3 = { {"happy", true}, {"pi", 3.141}, };

JSON as first-class data type

Here are some examples to give you an idea how to use the class.

Assume you want to create the JSON object

{ "pi": 3.141, "happy": true, "name": "Niels", "nothing": null, "answer": { "everything": 42 }, "list": [1, 0, 2], "object": { "currency": "USD", "value": 42.99 } }

With this library, you could write:

// create an empty structure (null) json j; // add a number that is stored as double (note the implicit conversion of j to an object) j["pi"] = 3.141; // add a Boolean that is stored as bool j["happy"] = true; // add a string that is stored as std::string j["name"] = "Niels"; // add another null object by passing nullptr j["nothing"] = nullptr; // add an object inside the object j["answer"]["everything"] = 42; // add an array that is stored as std::vector (using an initializer list) j["list"] = { 1, 0, 2 }; // add another object (using an initializer list of pairs) j["object"] = { {"currency", "USD"}, {"value", 42.99} }; // instead, you could also write (which looks very similar to the JSON above) json j2 = { {"pi", 3.141}, {"happy", true}, {"name", "Niels"}, {"nothing", nullptr}, {"answer", { {"everything", 42} }}, {"list", {1, 0, 2}}, {"object", { {"currency", "USD"}, {"value", 42.99} }} };

Note that in all these cases, you never need to "tell" the compiler which JSON value type you want to use. If you want to be explicit or express some edge cases, the functions json::array() and json::object() will help:

// a way to express the empty array [] json empty_array_explicit = json::array(); // ways to express the empty object {} json empty_object_implicit = json({}); json empty_object_explicit = json::object(); // a way to express an _array_ of key/value pairs [["currency", "USD"], ["value", 42.99]] json array_not_object = json::array({ {"currency", "USD"}, {"value", 42.99} });

Serialization / Deserialization

To/from strings

You can create a JSON value (deserialization) by appending _json to a string literal:

// create object from string literal json j = "{ \"happy\": true, \"pi\": 3.141 }"_json; // or even nicer with a raw string literal auto j2 = R"( { "happy": true, "pi": 3.141 } )"_json;

Note that without appending the _json suffix, the passed string literal is not parsed, but just used as JSON string value. That is, json j = "{ \"happy\": true, \"pi\": 3.141 }" would just store the string "{ "happy": true, "pi": 3.141 }" rather than parsing the actual object.

The string literal should be brought into scope with using namespace nlohmann::literals; (see json::parse()).

The above example can also be expressed explicitly using json::parse():

// parse explicitly auto j3 = json::parse(R"({"happy": true, "pi": 3.141})");

You can also get a string representation of a JSON value (serialize):

// explicit conversion to string std::string s = j.dump(); // {"happy":true,"pi":3.141} // serialization with pretty printing // pass in the amount of spaces to indent std::cout << j.dump(4) << std::endl; // { // "happy": true, // "pi": 3.141 // }

Note the difference between serialization and assignment:

// store a string in a JSON value json j_string = "this is a string"; // retrieve the string value auto cpp_string = j_string.template get<std::string>(); // retrieve the string value (alternative when a variable already exists) std::string cpp_string2; j_string.get_to(cpp_string2); // retrieve the serialized value (explicit JSON serialization) std::string serialized_string = j_string.dump(); // output of original string std::cout << cpp_string << " == " << cpp_string2 << " == " << j_string.template get<std::string>() <<

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多