amd-partial-phonetree-v1

amd-partial-phonetree-v1

融合句子转换器和对比学习的高效文本分类模型

SetFit模型结合sentence-transformers/paraphrase-mpnet-base-v2,通过高效的少样本学习实现文本分类。模型采用对比学习微调句子转换器和训练LogisticRegression分类头,具有优异的分类性能。支持最大512标记长度,适用于电话语音邮件和电话树分类需求。模型适合需要高效文本分类的研发人员和数据科学家使用。

Github模型文本分类句子嵌入开源项目SetFit少样本学习Logistic回归Huggingface

项目介绍:amd-partial-phonetree-v1

项目背景

amd-partial-phonetree-v1是基于SetFit框架的文本分类模型,主要用于电话语音的分类任务。它结合了高效的少样本学习技术和强大的句子嵌入模型(sentence-transformers/paraphrase-mpnet-base-v2)实现对文本的准确分类。该模型特别适用于需要将语音消息和电话菜单分类的场景。

模型细节

模型描述

  • 模型类型: SetFit
  • 句子嵌入模型: paraphrase-mpnet-base-v2
  • 分类头: LogisticRegression实例
  • 最大序列长度: 512个标记
  • 分类类别: 2个类别(语音信箱和电话菜单)

模型来源

模型标签

标签示例
语音信箱'您的电话已被转接至自动语音信箱'、'劳拉·伯顿——不在。请在提示音后留言'、'抱歉,当前无人接听。'
电话菜单'感谢您的来电'、'拨打400热线。拨打400热线,只需说您要拨打的号码'、'感谢拨打NatWest集团热线'

使用方法

直接推理

首先,安装SetFit库:

pip install setfit

然后,可以加载模型并运行推理:

from setfit import SetFitModel # 从🤗 Hub下载模型 model = SetFitModel.from_pretrained("nikcheerla/amd-partial-phonetree-v1") # 运行推理 preds = model("Thank you for calling CHS. If you are a CHS owner,")

训练细节

训练数据指标

训练集最小值中位数最大值
词汇数18.369729
标签训练样本数量
电话菜单5010
语音信箱5486

训练超参数

  • 批量大小: (64, 64)
  • 训练轮数: (3, 3)
  • 最大步骤: -1
  • 采样策略: 过采样
  • 迭代次数: 20
  • 主体学习率: (2e-05, 1e-05)
  • 头部学习率: 0.01
  • 损失: CosineSimilarityLoss
  • 距离度量: cosine_distance
  • 边距: 0.25
  • 端到端: False
  • 使用AMP: True
  • 暖启动比例: 0.1
  • 随机种子: 42
  • 评估最大步骤: -1
  • 最后加载最优模型: True

训练结果

轮数步骤训练损失验证损失
0.000210.2457-
1.065600.00570.1113
2.0131200.01980.1127
3.0196800.01930.117

框架版本

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.0.1+cu118
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

引用

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} }

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多