pygraft

pygraft

开源Python库,生成自定义模式和知识图谱

PyGraft是一个开源Python库,用于生成合成但真实的模式和知识图谱(KGs)。该工具支持灵活配置生成过程,可单独或同时生成模式和KG。PyGraft采用RDFS和OWL构造,确保逻辑一致性,适用于数据敏感或难以获取的研究领域。它提供多种可调参数,并使用DL推理器保证一致性。研究人员可以利用PyGraft根据简单规格快速生成所需的模式和KGs。

PyGraft知识图谱生成合成模式开源库语义网Github开源项目
<p align="center"> <img src="docs/source/logo.svg" height="300"> </p> <p align="center"> <a href='https://opensource.org/licenses/MIT'> <img src='https://img.shields.io/badge/License-MIT-blue.svg' alt='License'/> </a> <a href="https://pypi.org/project/pygraft/" alt="PyPI"> <img src="https://img.shields.io/pypi/v/pygraft.svg"/> </a> <a href="https://pypi.org/project/pygraft" alt="pypi downloads"> <img alt="pypi downloads" src="https://pepy.tech/badge/pygraft"> </a> <a href="https://github.com/psf/black"> <img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black"> </a> </p>

PyGraft: Configurable Generation of Synthetic Schemas and Knowledge Graphs at Your Fingertips

This is the open-source implementation of PyGraft, initially presented in this paper.

PyGraft is an open-source Python library for generating synthetic yet realistic schemas and (KGs) based on user-specified parameters. The generated resources are domain-agnostic, i.e. they are not tied to a specific application field.

Being able to synthesize schemas and KGs is an important milestone for conducting research in domains where data is sensitive or not readily available. PyGraft allows researchers and practitioners to generate schemas and KGs on the fly, provided minimal knowledge about the desired specifications.

PyGraft has the following features:

  • possibility to generate a schema, a KG, or both
  • highly-tunable process based on a broad array of user-specified parameters
  • schemas and KGs are built with an extended set of RDFS and OWL constructs
  • logical consistency is ensured by the use of a DL reasoner (HermiT)

Installation

The latest stable version of PyGraft can be downloaded and installed from PyPI with:

pip install pygraft

The latest version of PyGraft can be installed directly from GitHub source with:

pip install git+https://github.com/nicolas-hbt/pygraft.git

Upcoming Features

Additional features will be provided in the next versions of PyGraft. To name but a few:

High Priority

  • Allow support for any input schema (and not only the schemas generated by PyGraft).
  • Allow explanations for inconsistencies to be parsed from HermiT API. This would make it possible to remove a subset of triples from inconsistent KGs to make them consistent, without needing the user to run the KG generation pipeline again. This is especially true for very large graphs, or if the user comes with an already existing schema which is not perfectly consistent.

Medium Priority

  • Fix the conflict between the following properties rdfs:subPropertyOf, owl:FunctionalProperty, and owl:InverseFunctionalProperty, as a non-zero value for the three of them at the same time can lead to inconsistent KGs.

Low Priority

  • Facilitate the generation of larger KGs (this would imply removing any dependency to rdflib).
  • Add support for literals.

PyGraft Overview

The contributions of PyGraft are as follows:

  • To the best of our knowledge, PyGraft is the first generator able to synthesize both schemas and KGs in a single pipeline.

  • The generated schemas and KGs are described with an extended set of RDFS and OWL constructs, allowing for both fine-grained resource descriptions and strict compliance with common Semantic Web standards.

  • A broad range of parameters can be specified by the user. These allow for creating an infinite number of graphs with different characteristics. More details on parameters can be found in the Parameters section of the official documentation.

From a high-level perspective, the entire PyGraft generation pipeline is depicted in Figure 1. In particular, Class and Relation Generators are initialized with user-specified parameters and used to build the schema incrementally. The logical consistency of the schema is subsequently checked using the HermiT reasoner from owlready2. If you are also interested in generating a KG based on this schema, the KG Generator is initialized with KG-related parameters and fused with the previously generated schema to sequentially build the KG. Ultimately, the logical consistency of the resulting KG is (again) assessed using HermiT.

<p align="center"> <img src="docs/source/img/pygraft-overview.png" height="300"> </p> <p align="center"> Figure 1: PyGraft Overview </p>

Usage -- PyGraft as a package

Once installed, PyGraft can be loaded with:

import pygraft

Importantly, you can access all the functions with:

pygraft.__all__

Generating a Schema

Let us assume we are only interested in generating a schema. We first need to retrieve the template configuration file (e.g. a .yaml configuration file), which is as simple as calling create_yaml_template():

pygraft.create_yaml_template()

Now, the template has been generated under the current working directory, and is named template.yml by default.

This file contains all the tunable parameters. For more details on their meanings, please check the Parameters section.

For the sake of simplicity, we do not plan to modify this template and stick with the default parameter values.

Generating an ontology is made possible via the generate_schema(path) function, which only requires the relative path to the configuration file.

[!IMPORTANT] For the following steps, i.e. generating a schema and a KG, you need Java to be installed and the $JAVA_HOME environment variable to be properly assigned. This is because the HermiT reasoner currently runs using Java.

In our case, the configuration file is named template.yml and is located in the current working directory, thereby:

pygraft.generate_schema("template.yml")

The generated schema can be retrieved in output/template/schema.rdf. Additional files are created during the process: output/template/class_info.json and output/template/relation_info.json. These files give important information about the classes and relations of the generated schema, respectively.

Generating a KG

Let us now explore how to use PyGraft to generate a KG. In this section, we assume we already have a schema, that will serve as a blueprint for generating our KG. We can use the same configuration file as before – as it also contained parameters related to the KG generation (although not used before, since we only asked for a schema) – to generate a KG:

pygraft.generate_kg("template.yml")

The generated KG can be retrieved in output/template/full_graph.rdf. It combines information inherited from output/template/schema.rdf (i.e. ontological information) with information related to individuals.

Full Pipeline Execution

In most cases, one wants to generate both a schema and a KG in a single process. PyGraft allows this with the generate(path) function, which operates just as the aforedescribed two functions generate_schema(path) and generate_kg(path):

pygraft.generate("template.yml")

Usage -- PyGraft from the CLI

Assuming you have cloned the PyGraft repository to your computer:

  1. Install dependencies:
pip install pygraft
  1. Call the PyGraft entry point, from the project's root folder:
# Displaying help python -m pygraft.main --help
# Generating a schema from a local template file python -m pygraft.main -g generate_schema -conf template.yml # ... then browse the resulting schema in the ./output/template folder.

About

Interested in contributing to PyGraft? Please consider reaching out: nicolas.hubert@univ-lorraine.fr

If you like PyGraft, consider downloading PyGraft and starring our GitHub repository to make it known and promote its development!

If you use or mention PyGraft in a publication, cite our work as:

@misc{hubert2023pygraft,
  title={PyGraft: Configurable Generation of Schemas and Knowledge Graphs at Your Fingertips}, 
  author={Nicolas Hubert and Pierre Monnin and Mathieu d'Aquin and Armelle Brun and Davy Monticolo},
  year={2023},
  eprint={2309.03685},
  archivePrefix={arXiv},
  primaryClass={cs.AI}
}

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多