scrnaseq

scrnaseq

单细胞RNA测序数据分析流程 支持多种工具的开源项目

nf-core/scrnaseq是一个开源的单细胞RNA测序数据分析流程。该项目集成了Alevin-Fry、STARSolo、Kallisto等多种分析工具,可处理10x Genomics等平台产生的数据。流程提供详细文档和灵活的参数设置,支持多种运行环境。用户可根据需求选择合适的分析方法,输出h5ad、Seurat或mtx格式结果。项目持续更新,旨在为单细胞转录组分析提供标准化和可重复的解决方案。

scRNAseqnf-core单细胞测序生物信息学NextflowGithub开源项目
<h1> <picture> <source media="(prefers-color-scheme: dark)" srcset="docs/images/nf-core-scrnaseq_logo_dark.png"> <img alt="nf-core/scrnaseq" src="docs/images/nf-core-scrnaseq_logo_light.png"> </picture> </h1>

GitHub Actions CI Status GitHub Actions Linting Status AWS CI Cite with Zenodo nf-test

Nextflow run with conda run with docker run with singularity Launch on Seqera Platform

Get help on SlackFollow on TwitterFollow on MastodonWatch on YouTube

Introduction

nf-core/scrnaseq is a bioinformatics best-practice analysis pipeline for processing 10x Genomics single-cell RNA-seq data.

This is a community effort in building a pipeline capable to support:

  • Alevin-Fry + AlevinQC
  • STARSolo
  • Kallisto + BUStools
  • Cellranger
  • UniverSC

Documentation

The nf-core/scrnaseq pipeline comes with documentation about the pipeline usage, parameters and output.

scrnaseq workflow

Usage

[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with -profile test before running the workflow on actual data.

First, prepare a samplesheet with your input data that looks as follows:

samplesheet.csv:

sample,fastq_1,fastq_2,expected_cells pbmc8k,pbmc8k_S1_L007_R1_001.fastq.gz,pbmc8k_S1_L007_R2_001.fastq.gz,10000 pbmc8k,pbmc8k_S1_L008_R1_001.fastq.gz,pbmc8k_S1_L008_R2_001.fastq.gz,10000

Each row represents a fastq file (single-end) or a pair of fastq files (paired end).

Now, you can run the pipeline using:

nextflow run nf-core/scrnaseq \ -profile <docker/singularity/.../institute> \ --input samplesheet.csv \ --genome_fasta GRCm38.p6.genome.chr19.fa \ --gtf gencode.vM19.annotation.chr19.gtf \ --protocol 10XV2 \ --aligner <alevin/kallisto/star/cellranger/universc> \ --outdir <OUTDIR>

[!WARNING] Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

For more details and further functionality, please refer to the usage documentation and the parameter documentation.

Decision Tree for users

The nf-core/scrnaseq pipeline features several paths to analyze your single cell data. Future additions will also be done soon, e.g. the addition of multi-ome analysis types. To aid users in analyzing their data, we have added a decision tree to help people decide on what type of analysis they want to run and how to choose appropriate parameters for that.

graph TD A[sc RNA] -->|alevin-fry| B(h5ad/seurat/mtx matrices) A[sc RNA] -->|CellRanger| B(h5ad/seurat/mtx matrices) A[sc RNA] -->|kbpython| B(h5ad/seurat/mtx matrices) A[sc RNA] -->|STARsolo| B(h5ad/seurat/mtx matrices) A[sc RNA] -->|Universc| B(h5ad/seurat/mtx matrices)

Options for the respective alignment method can be found here to choose between methods.

Pipeline output

To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.

Credits

nf-core/scrnaseq was originally written by Bailey PJ, Botvinnik O, Marques de Almeida F, Gabernet G, Peltzer A, Sturm G.

We thank the following people and teams for their extensive assistance in the development of this pipeline:

  • @heylf
  • @KevinMenden
  • @FloWuenne
  • @rob-p
  • GHGA

Contributions and Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #scrnaseq channel (you can join with this invite).

Citations

If you use nf-core/scrnaseq for your analysis, please cite it using the following doi: 10.5281/zenodo.3568187

The basic benchmarks that were used as motivation for incorporating the three available modular workflows can be found in this publication.

We offer all three paths for the processing of scRNAseq data so it remains up to the user to decide which pipeline workflow is chosen for a particular analysis question.

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多