sarek

sarek

强大灵活的全基因组变异检测工作流

Sarek是一个用于全基因组或靶向测序数据变异检测的开源工作流。它支持多物种数据处理,可进行肿瘤/正常样本对比分析。基于Nextflow构建并使用容器技术,Sarek具有高度可重复性和易维护性。该工作流提供从原始数据到变异注释的完整分析,涵盖质控、比对、变异检测等关键步骤,为研究人员提供了强大的基因组分析工具。

nf-core/sarek生物信息学基因组测序变异检测NextflowGithub开源项目
<h1> <picture> <source media="(prefers-color-scheme: dark)" srcset="docs/images/nf-core-sarek_logo_dark.png"> <img alt="nf-core/sarek" src="docs/images/nf-core-sarek_logo_light.png"> </picture> </h1>

GitHub Actions CI Status GitHub Actions Linting Status AWS CI nf-test Cite with Zenodo nf-test

Nextflow run with conda run with docker run with singularity Launch on Seqera Platform

Get help on Slack Follow on Twitter Follow on Mastodon Watch on YouTube

Introduction

nf-core/sarek is a workflow designed to detect variants on whole genome or targeted sequencing data. Initially designed for Human, and Mouse, it can work on any species with a reference genome. Sarek can also handle tumour / normal pairs and could include additional relapses.

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!

On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources. The results obtained from the full-sized test can be viewed on the nf-core website.

It's listed on Elixir - Tools and Data Services Registry and Dockstore.

<p align="center"> <img title="Sarek Workflow" src="docs/images/sarek_workflow.png" width=30%> </p>

Pipeline summary

Depending on the options and samples provided, the pipeline can currently perform the following:

  • Form consensus reads from UMI sequences (fgbio)
  • Sequencing quality control and trimming (enabled by --trim_fastq) (FastQC, fastp)
  • Map Reads to Reference (BWA-mem, BWA-mem2, dragmap or Sentieon BWA-mem)
  • Process BAM file (GATK MarkDuplicates, GATK BaseRecalibrator and GATK ApplyBQSR or Sentieon LocusCollector and Sentieon Dedup)
  • Summarise alignment statistics (samtools stats, mosdepth)
  • Variant calling (enabled by --tools, see compatibility):
    • ASCAT
    • CNVkit
    • Control-FREEC
    • DeepVariant
    • freebayes
    • GATK HaplotypeCaller
    • Manta
    • mpileup
    • MSIsensor-pro
    • Mutect2
    • Sentieon Haplotyper
    • Strelka2
    • TIDDIT
  • Variant filtering and annotation (SnpEff, Ensembl VEP, BCFtools annotate)
  • Summarise and represent QC (MultiQC)
<p align="center"> <img title="Sarek Workflow" src="docs/images/sarek_subway.png" width=60%> </p>

Usage

[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with -profile test before running the workflow on actual data.

First, prepare a samplesheet with your input data that looks as follows:

samplesheet.csv:

patient,sample,lane,fastq_1,fastq_2 ID1,S1,L002,ID1_S1_L002_R1_001.fastq.gz,ID1_S1_L002_R2_001.fastq.gz

Each row represents a pair of fastq files (paired end).

Now, you can run the pipeline using:

nextflow run nf-core/sarek \ -profile <docker/singularity/.../institute> \ --input samplesheet.csv \ --outdir <OUTDIR>

[!WARNING] Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

For more details and further functionality, please refer to the usage documentation and the parameter documentation.

Pipeline output

To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.

Benchmarking

On each release, the pipeline is run on 3 full size tests:

  • test_full runs tumor-normal data for one patient from the SEQ2C consortium
  • test_full_germline runs a WGS 30X Genome-in-a-Bottle(NA12878) dataset
  • test_full_germline_ncbench_agilent runs two WES samples with 75M and 200M reads (data available here). The results are uploaded to Zenodo, evaluated against a truth dataset, and results are made available via the NCBench dashboard.

Credits

Sarek was originally written by Maxime U Garcia and Szilveszter Juhos at the National Genomics Infastructure and National Bioinformatics Infastructure Sweden which are both platforms at SciLifeLab, with the support of The Swedish Childhood Tumor Biobank (Barntumörbanken). Friederike Hanssen and Gisela Gabernet at QBiC later joined and helped with further development.

The Nextflow DSL2 conversion of the pipeline was lead by Friederike Hanssen and Maxime U Garcia.

Maintenance is now lead by Friederike Hanssen and Maxime U Garcia (now at Seqera Labs)

Main developers:

We thank the following people for their extensive assistance in the development of this pipeline:

Acknowledgements

BarntumörbankenSciLifeLab
National Genomics InfrastructureNational Bioinformatics Infrastructure Sweden
QBiCGHGA
DNGC

Contributions & Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #sarek channel (you can join with this invite), or contact us: Maxime U Garcia, Friederike Hanssen

Citations

If you use nf-core/sarek for your analysis, please cite the Sarek article as follows:

Friederike Hanssen, Maxime U Garcia, Lasse Folkersen, Anders Sune Pedersen, Francesco Lescai, Susanne Jodoin, Edmund Miller, Oskar Wacker, Nicholas Smith, nf-core community, Gisela Gabernet, Sven Nahnsen Scalable and efficient DNA sequencing analysis on different compute infrastructures aiding variant discovery NAR Genomics and Bioinformatics Volume 6, Issue 2, June 2024, lqae031, doi: 10.1093/nargab/lqae031.

Garcia M, Juhos S, Larsson M et al. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants [version 2; peer review: 2 approved] F1000Research 2020, 9:63 doi: 10.12688/f1000research.16665.2.

You can cite the sarek zenodo record for a specific version using the following doi: 10.5281/zenodo.3476425

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

You can cite the nf-core publication as follows:

The nf-core framework for community-curated bioinformatics pipelines.

Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.

Nat Biotechnol. 2020 Feb

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多