sarek

sarek

强大灵活的全基因组变异检测工作流

Sarek是一个用于全基因组或靶向测序数据变异检测的开源工作流。它支持多物种数据处理,可进行肿瘤/正常样本对比分析。基于Nextflow构建并使用容器技术,Sarek具有高度可重复性和易维护性。该工作流提供从原始数据到变异注释的完整分析,涵盖质控、比对、变异检测等关键步骤,为研究人员提供了强大的基因组分析工具。

nf-core/sarek生物信息学基因组测序变异检测NextflowGithub开源项目
<h1> <picture> <source media="(prefers-color-scheme: dark)" srcset="docs/images/nf-core-sarek_logo_dark.png"> <img alt="nf-core/sarek" src="docs/images/nf-core-sarek_logo_light.png"> </picture> </h1>

GitHub Actions CI Status GitHub Actions Linting Status AWS CI nf-test Cite with Zenodo nf-test

Nextflow run with conda run with docker run with singularity Launch on Seqera Platform

Get help on Slack Follow on Twitter Follow on Mastodon Watch on YouTube

Introduction

nf-core/sarek is a workflow designed to detect variants on whole genome or targeted sequencing data. Initially designed for Human, and Mouse, it can work on any species with a reference genome. Sarek can also handle tumour / normal pairs and could include additional relapses.

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!

On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources. The results obtained from the full-sized test can be viewed on the nf-core website.

It's listed on Elixir - Tools and Data Services Registry and Dockstore.

<p align="center"> <img title="Sarek Workflow" src="docs/images/sarek_workflow.png" width=30%> </p>

Pipeline summary

Depending on the options and samples provided, the pipeline can currently perform the following:

  • Form consensus reads from UMI sequences (fgbio)
  • Sequencing quality control and trimming (enabled by --trim_fastq) (FastQC, fastp)
  • Map Reads to Reference (BWA-mem, BWA-mem2, dragmap or Sentieon BWA-mem)
  • Process BAM file (GATK MarkDuplicates, GATK BaseRecalibrator and GATK ApplyBQSR or Sentieon LocusCollector and Sentieon Dedup)
  • Summarise alignment statistics (samtools stats, mosdepth)
  • Variant calling (enabled by --tools, see compatibility):
    • ASCAT
    • CNVkit
    • Control-FREEC
    • DeepVariant
    • freebayes
    • GATK HaplotypeCaller
    • Manta
    • mpileup
    • MSIsensor-pro
    • Mutect2
    • Sentieon Haplotyper
    • Strelka2
    • TIDDIT
  • Variant filtering and annotation (SnpEff, Ensembl VEP, BCFtools annotate)
  • Summarise and represent QC (MultiQC)
<p align="center"> <img title="Sarek Workflow" src="docs/images/sarek_subway.png" width=60%> </p>

Usage

[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with -profile test before running the workflow on actual data.

First, prepare a samplesheet with your input data that looks as follows:

samplesheet.csv:

patient,sample,lane,fastq_1,fastq_2 ID1,S1,L002,ID1_S1_L002_R1_001.fastq.gz,ID1_S1_L002_R2_001.fastq.gz

Each row represents a pair of fastq files (paired end).

Now, you can run the pipeline using:

nextflow run nf-core/sarek \ -profile <docker/singularity/.../institute> \ --input samplesheet.csv \ --outdir <OUTDIR>

[!WARNING] Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

For more details and further functionality, please refer to the usage documentation and the parameter documentation.

Pipeline output

To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.

Benchmarking

On each release, the pipeline is run on 3 full size tests:

  • test_full runs tumor-normal data for one patient from the SEQ2C consortium
  • test_full_germline runs a WGS 30X Genome-in-a-Bottle(NA12878) dataset
  • test_full_germline_ncbench_agilent runs two WES samples with 75M and 200M reads (data available here). The results are uploaded to Zenodo, evaluated against a truth dataset, and results are made available via the NCBench dashboard.

Credits

Sarek was originally written by Maxime U Garcia and Szilveszter Juhos at the National Genomics Infastructure and National Bioinformatics Infastructure Sweden which are both platforms at SciLifeLab, with the support of The Swedish Childhood Tumor Biobank (Barntumörbanken). Friederike Hanssen and Gisela Gabernet at QBiC later joined and helped with further development.

The Nextflow DSL2 conversion of the pipeline was lead by Friederike Hanssen and Maxime U Garcia.

Maintenance is now lead by Friederike Hanssen and Maxime U Garcia (now at Seqera Labs)

Main developers:

We thank the following people for their extensive assistance in the development of this pipeline:

Acknowledgements

BarntumörbankenSciLifeLab
National Genomics InfrastructureNational Bioinformatics Infrastructure Sweden
QBiCGHGA
DNGC

Contributions & Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #sarek channel (you can join with this invite), or contact us: Maxime U Garcia, Friederike Hanssen

Citations

If you use nf-core/sarek for your analysis, please cite the Sarek article as follows:

Friederike Hanssen, Maxime U Garcia, Lasse Folkersen, Anders Sune Pedersen, Francesco Lescai, Susanne Jodoin, Edmund Miller, Oskar Wacker, Nicholas Smith, nf-core community, Gisela Gabernet, Sven Nahnsen Scalable and efficient DNA sequencing analysis on different compute infrastructures aiding variant discovery NAR Genomics and Bioinformatics Volume 6, Issue 2, June 2024, lqae031, doi: 10.1093/nargab/lqae031.

Garcia M, Juhos S, Larsson M et al. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants [version 2; peer review: 2 approved] F1000Research 2020, 9:63 doi: 10.12688/f1000research.16665.2.

You can cite the sarek zenodo record for a specific version using the following doi: 10.5281/zenodo.3476425

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

You can cite the nf-core publication as follows:

The nf-core framework for community-curated bioinformatics pipelines.

Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.

Nat Biotechnol. 2020 Feb

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多