ROSA is an AI agent that can be used to interact with ROS1 and ROS2 systems in order to carry out various tasks. It is built using the open-source Langchain framework, and can be adapted to work with different robots and environments, making it a versatile tool for robotics research and development.
navigation, perception, control, and other"/velocity parameter to 10"/robot/status topic"/robot/status topic?"ROSA already supports any robot built with ROS1 or ROS2, but we are also working on custom agents for some popular robots. These custom agents go beyond the basic ROSA functionality to provide more advanced capabilities and features.
This guide provides a quick way to get started with ROSA.
Note: ROS Noetic uses Python3.8, but LangChain requires Python3.9 or higher. To use ROSA with ROS Noetic, you will need to create a virtual environment with Python3.9 or higher and install ROSA in that environment.
pip3 install jpl-rosa
from rosa import ROSA llm = get_your_llm_here() rosa = ROSA(ros_version=1, llm=llm) rosa.invoke("Show me a list of topics that have publishers but no subscribers")
We have included a demo that uses ROSA to control the TurtleSim robot in simulation. To run the demo, you will need to have Docker installed on your machine.
The following video shows ROSA reasoning about how to draw a 5-point star, then executing the necessary commands to do so.
https://github.com/user-attachments/assets/77b97014-6d2e-4123-8d0b-ea0916d93a4e
src/turtle_agent/scripts/llm.py./demo.shcatkin build && source devel/setup.bash && roslaunch turtle_agent agent
examplesROSA is designed to be easily adaptable to different robots and environments. To adapt ROSA for your robot, you
can either (1) create a new class that inherits from the ROSA class, or (2) create a new instance of the ROSA class
and pass in the necessary parameters. The first option is recommended if you need to make significant changes to the
agent's behavior, while the second option is recommended if you want to use the agent with minimal changes.
In either case, ROSA is adapted by providing it with a new set of tools and/or prompts. The tools are used to interact with the robot and the ROS environment, while the prompts are used to guide the agents behavior.
There are two methods for adding tools to ROSA:
tools parameter.tool_packages parameter.The first method is recommended if you have a small number of tools, while the second method is recommended if you have a large number of tools or if you want to organize your tools into separate packages.
Hint: check src/turtle_agent/scripts/turtle_agent.py for examples on how to use both methods.
To add prompts to ROSA, you need to create a new instance of the RobotSystemPrompts class and pass it to the ROSA
constructor using the prompts parameter. The RobotSystemPrompts class contains the following attributes:
embodiment_and_persona: Gives the agent a sense of identity and helps it understand its role.about_your_operators: Provides information about the operators who interact with the robot, which can help the agent
understand the context of the interaction.critical_instructions: Provides critical instructions that the agent should follow to ensure the safety and
well-being of the robot and its operators.constraints_and_guardrails: Gives the robot a sense of its limitations and informs its decision-making process.about_your_environment: Provides information about the physical and digital environment in which the robot operates.about_your_capabilities: Describes what the robot can and cannot do, which can help the agent understand its
limitations.nuance_and_assumptions: Provides information about the nuances and assumptions that the agent should consider when
interacting with the robot.mission_and_objectives: Describes the mission and objectives of the robot, which can help the agent understand its
purpose and goals.environment_variables: Provides information about the environment variables that the agent should consider when
interacting with the robot. e.g. $ROS_MASTER_URI, or $ROS_IP.Here is a quick and easy example showing how to add new tools and prompts to ROSA:
from langchain.agents import tool from rosa import ROSA, RobotSystemPrompts @tool def move_forward(distance: float) -> str: """ Move the robot forward by the specified distance. :param distance: The distance to move the robot forward. """ # Your code here ... return f"Moving forward by {distance} units." prompts = RobotSystemPrompts( embodiment_and_persona="You are a cool robot that can move forward." ) llm = get_your_llm_here() rosa = ROSA(ros_version=1, llm=llm, tools=[move_forward], prompts=prompts) rosa.invoke("Move forward by 2


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、 科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI 法律顾问。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号