ROSA is an AI agent that can be used to interact with ROS1 and ROS2 systems in order to carry out various tasks. It is built using the open-source Langchain framework, and can be adapted to work with different robots and environments, making it a versatile tool for robotics research and development.
navigation, perception, control, and other"/velocity parameter to 10"/robot/status topic"/robot/status topic?"ROSA already supports any robot built with ROS1 or ROS2, but we are also working on custom agents for some popular robots. These custom agents go beyond the basic ROSA functionality to provide more advanced capabilities and features.
This guide provides a quick way to get started with ROSA.
Note: ROS Noetic uses Python3.8, but LangChain requires Python3.9 or higher. To use ROSA with ROS Noetic, you will need to create a virtual environment with Python3.9 or higher and install ROSA in that environment.
pip3 install jpl-rosa
from rosa import ROSA llm = get_your_llm_here() rosa = ROSA(ros_version=1, llm=llm) rosa.invoke("Show me a list of topics that have publishers but no subscribers")
We have included a demo that uses ROSA to control the TurtleSim robot in simulation. To run the demo, you will need to have Docker installed on your machine.
The following video shows ROSA reasoning about how to draw a 5-point star, then executing the necessary commands to do so.
https://github.com/user-attachments/assets/77b97014-6d2e-4123-8d0b-ea0916d93a4e
src/turtle_agent/scripts/llm.py./demo.shcatkin build && source devel/setup.bash && roslaunch turtle_agent agent
examplesROSA is designed to be easily adaptable to different robots and environments. To adapt ROSA for your robot, you
can either (1) create a new class that inherits from the ROSA class, or (2) create a new instance of the ROSA class
and pass in the necessary parameters. The first option is recommended if you need to make significant changes to the
agent's behavior, while the second option is recommended if you want to use the agent with minimal changes.
In either case, ROSA is adapted by providing it with a new set of tools and/or prompts. The tools are used to interact with the robot and the ROS environment, while the prompts are used to guide the agents behavior.
There are two methods for adding tools to ROSA:
tools parameter.tool_packages parameter.The first method is recommended if you have a small number of tools, while the second method is recommended if you have a large number of tools or if you want to organize your tools into separate packages.
Hint: check src/turtle_agent/scripts/turtle_agent.py for examples on how to use both methods.
To add prompts to ROSA, you need to create a new instance of the RobotSystemPrompts class and pass it to the ROSA
constructor using the prompts parameter. The RobotSystemPrompts class contains the following attributes:
embodiment_and_persona: Gives the agent a sense of identity and helps it understand its role.about_your_operators: Provides information about the operators who interact with the robot, which can help the agent
understand the context of the interaction.critical_instructions: Provides critical instructions that the agent should follow to ensure the safety and
well-being of the robot and its operators.constraints_and_guardrails: Gives the robot a sense of its limitations and informs its decision-making process.about_your_environment: Provides information about the physical and digital environment in which the robot operates.about_your_capabilities: Describes what the robot can and cannot do, which can help the agent understand its
limitations.nuance_and_assumptions: Provides information about the nuances and assumptions that the agent should consider when
interacting with the robot.mission_and_objectives: Describes the mission and objectives of the robot, which can help the agent understand its
purpose and goals.environment_variables: Provides information about the environment variables that the agent should consider when
interacting with the robot. e.g. $ROS_MASTER_URI, or $ROS_IP.Here is a quick and easy example showing how to add new tools and prompts to ROSA:
from langchain.agents import tool from rosa import ROSA, RobotSystemPrompts @tool def move_forward(distance: float) -> str: """ Move the robot forward by the specified distance. :param distance: The distance to move the robot forward. """ # Your code here ... return f"Moving forward by {distance} units." prompts = RobotSystemPrompts( embodiment_and_persona="You are a cool robot that can move forward." ) llm = get_your_llm_here() rosa = ROSA(ros_version=1, llm=llm, tools=[move_forward], prompts=prompts) rosa.invoke("Move forward by 2


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号