Apple Silicon Mac机器学习性能测试工具
mac-ml-speed-test是一个专为Apple Silicon Mac设计的机器学习性能测试项目。通过简单脚本对比不同Mac设备上的机器学习模型速度,涵盖计算机视觉和自然语言处理等领域。项目使用PyTorch、TensorFlow等主流框架,并提供详细配置指南,便于用户进行性能评估。测试内容包括图像分类、文本分类和LLM文本生成等任务,使用CIFAR100、Food101和IMDB等数据集。此外,项目还包括与NVIDIA TITAN RTX和Google Colab免费版的性能对比,为用户提供更全面的参考数据。
A collection of simple scripts focused on benchmarking the speed of various machine learning models on Apple Silicon Macs (M1, M2, M3).
Scripts should also ideally work with CUDA (for benchmarking on other machines/Google Colab).
Note: Scripts are not designed to achieved state-of-the-art results (e.g. accuracy), they are designed to be as simple as possible to run out of the box. Most are examples straight from PyTorch/TensorFlow docs I've tweaked for specific focus on MPS (Metal Performance Shaders - Apple's GPU acceleration framework) devices + simple logging of timing. They are scrappy and likely not the best way to do things, but they are simple and easy to run.
The focus of these experiments is to get a quick benchmark across various ML problems and see how the Apple Silicon Macs perform.
The focus is on hardware comparison rather than framework to framework comparison and measuring speed rather than accuracy.
This repo contains code/results for the following experiments:
While the focus is on Apple Silicon Macs, I've included my own deep learning PC (NVIDIA TITAN RTX) as well as a Google Colab free tier instance for comparison.
If you have a brand new machine, you'll need to setup a few things before running the experiments.
The following steps will get you ready to go for all experiments (and many future machine learning experiments).
However, if you've already got conda
, feel free to skip to the next section.
xcode-select --install
in terminal and skip to next step)Go to https://brew.sh/ and follow the main instructions on the front page.
Run the commands on the homebrew webpage in the terminal and follow the instructions when they appear.
brew install miniforge
or
Download Miniforge3 for macOS ARM64 from: https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
~/Downloads
folder:chmod +x ~/Downloads/Miniforge3-MacOSX-arm64.sh
sh ~/Downloads/Miniforge3-MacOSX-arm64.sh
source ~/miniforge3/bin/activate
If conda is working, you should have a (base)
at the start of your terminal prompt.
For example: (base) daniel@Daniels-MacBook-Pro-3 ~ %
git clone https://github.com/mrdbourke/mac-ml-speed-test.git
cd mac-ml-speed-test
conda create --prefix ./env python=3.10
Note: You could also use conda create --name some-env-name python=3.10
but I prefer --prefix
as it's more explicit.
conda env list
conda activate ./env
Note: This may have a few extra packages that aren't 100% needed for speed tests but help to have (e.g. JupyterLab, PrettyTable).
conda install -c conda-forge pip pandas numpy matplotlib scikit-learn jupyterlab langchain prettytable py-cpuinfo tqdm
conda install pytorch::pytorch torchvision -c pytorch
Note: MPS (Metal Performance Shaders, aka using the GPU on Apple Silicon) comes standard with PyTorch on macOS, you don't need to install anything extra. MPS can be accessed via
torch.mps
, see more notes in the PyTorch documentation.
Experiment details:
Model | Dataset | Image Size | Epochs | Num Samples | Num Classes | Problem Type |
---|---|---|---|---|---|---|
ResNet50 | CIFAR100 | 32x32x3 | 5 | 50,000 train, 10,000 test | 100 | Image Classification |
Example usage of pytorch_test_computer_vision_cifar100.py
for 1 epoch and batch size of 32:
python pytorch_test_computer_vision_cifar100.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128, 256"
.
Default behaviour is to test for 5
epochs and batch sizes of "16, 32, 64, 128, 256, 512, 1024"
.
The following:
python pytorch_test_computer_vision_cifar100.py
Is equivalent to:
python pytorch_test_computer_vision_cifar100.py --epochs=5 --batch_sizes="16, 32, 64, 128, 256, 512, 1024"
Results will be saved to results/results_pytorch_cv/[file_name].csv
where file_name
is a combination of information from the experiment (see pytorch_test_computer_vision_cifar100.py
for details).
Experiment details:
Model | Dataset | Image Size | Epochs | Num Samples | Num Classes | Problem Type |
---|---|---|---|---|---|---|
ResNet50 | Food101 | 224x224x3 | 5 | 75,750 train, 25,250 test | 101 | Image Classification |
Note: Download Hugging Face Datasets to download Food101 dataset.
python -m pip install datasets
Example usage of pytorch_test_computer_vision_food101.py
for 1 epoch and batch size of 32:
python pytorch_test_computer_vision_food101.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128, 256"
.
Default behaviour is to test for 3
epochs and batch sizes of "32, 64, 128"
.
The following:
python pytorch_test_computer_vision_food101.py
Is equivalent to:
python pytorch_test_computer_vision_food101.py --epochs=3 --batch_sizes="32, 64, 128"
Results will be saved to results/results_pytorch_cv/[file_name].csv
where file_name
is a combination of information from the experiment (see pytorch_test_computer_vision_food101.py
for details).
Experiment details:
Model | Dataset | Sequence Size | Epochs | Num Samples | Num Classes | Problem Type |
---|---|---|---|---|---|---|
DistilBERT (fine-tune top 2 layers + top Transformer block) | IMDB | 512 | 5 | 25,000 train, 25,000 test | 2 | Text Classification |
Note: The
pytorch_test_nlp.py
uses Hugging Face Transformers/Datasets/Evaluate/Accelerate to help with testing. If you get into ML, you'll likely come across these libraries, they are very useful for NLP and ML in general. The model loaded from Transformers uses PyTorch as a backend.
python -m pip install transformers datasets evaluate accelerate
Example usage of pytorch_test_nlp.py
for 1 epoch and batch size of 32:
python pytorch_test_nlp.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128, 256"
.
Default behaviour is to test for 3
epochs and batch sizes of "16, 32, 64, 128, 256, 512"
(note: without 24GB+ of RAM, running batch sizes of 256+ will likely error, for example my M1 Pro with 18GB of VRAM can only run "16, 32, 64, 128"
and fails on 256
with the model/data setup in python_test_nlp.py
).
The following:
python pytorch_test_nlp.py
Is equivalent to:
python pytorch_test_nlp.py --epochs=3 --batch_sizes="16, 32, 64, 128, 256, 512"
Results will be saved to results/results_pytorch_nlp/[file_name].csv
where file_name
is a combination of information from the experiment (see pytorch_test_nlp.py
for details).
For more on running TensorFlow on macOS, see Apple's developer guide.
Note: Install TensorFlow Datasets to access Food101 dataset with TensorFlow.
python -m pip install tensorflow python -m pip install tensorflow-metal python -m pip install tensorflow_datasets
Note: TensorFlow can be run on macOS without using the GPU via
pip install tensorflow
, however, if you're using an Apple Silicon Mac, you'll want to use the Metal plugin for GPU acceleration (pip install tensorflow-metal
).After installing
tensorflow-metal
and running the scripts, you should see something like:
2023-12-06 12:22:02.016745: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:117] Plugin optimizer for device_type GPU is enabled.
Experiment details:
Model | Dataset | Image Size | Epochs | Num Samples | Num Classes | Problem Type |
---|---|---|---|---|---|---|
ResNet50 | CIFAR100 | 32x32x3 | 5 | 50,000 train, 10,000 test | 100 | Image Classification |
Example usage of tensorflow_test_computer_vision_cifar100.py
for 1 epoch and batch size of 32:
python tensorflow_test_computer_vision_cifar100.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128, 256"
.
Default behaviour is to test for 5
epochs and batch sizes of "16, 32, 64, 128, 256, 512, 1024"
.
The following:
python tensorflow_test_computer_vision_cifar100.py
Is equivalent to:
python tensorflow_test_computer_vision_cifar100.py --epochs=5 --batch_sizes="16, 32, 64, 128, 256, 512, 1024"
Results will be saved to results/results_tensorflow_cv/[file_name].csv
where file_name
is a combination of information from the experiment (see tensorflow_test_computer_vision_cifar100.py
for details).
Experiment details:
Model | Dataset | Image Size | Epochs | Num Samples | Num Classes | Problem Type |
---|---|---|---|---|---|---|
ResNet50 | Food101 | 224x224x3 | 5 | 75,750 train, 25,250 test | 101 | Image Classification |
Example usage of tensorflow_test_computer_vision_food101.py
for 1 epoch and batch size of 32:
python tensorflow_test_computer_vision_food101.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128"
.
Default behaviour is to test for 3
epochs and batch sizes of "32, 64, 128"
.
The following:
python tensorflow_test_computer_vision_food101.py
Is equivalent to:
python tensorflow_test_computer_vision_food101.py --epochs=3 --batch_sizes="32, 64, 128"
Results will be saved to results/results_tensorflow_cv/[file_name].csv
where file_name
is a combination of information from the experiment (see tensorflow_test_computer_vision_food101.py
for details).
Experiment details:
Model | Dataset | Sequence Size | Epochs | Num Samples | Num Classes | Problem Type |
---|---|---|---|---|---|---|
SmallTransformer (custom) | IMDB | 200 | 5 | 25,000 train, 25,000 test | 2 | Text Classification |
Example usage of tensorflow_test_nlp.py
for 1 epoch and batch size of 32:
python tensorflow_test_nlp.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128, 256"
.
Default behaviour is to test for 3
epochs and batch sizes of "16, 32, 64, 128"
.
The following:
python tensorflow_test_nlp.py
Is equivalent to:
python tensorflow_test_nlp.py --epochs=3 --batch_sizes="16, 32, 64, 128"
Results will be saved to results/results_tensorflow_nlp/[file_name].csv
where file_name
is a combination of information from the experiment (see tensorflow_test_nlp.py
for details).
Experiment details:
Model | Task | Num Questions | Num Answers | Total Generations |
---|---|---|---|---|
Llama 2 7B .gguf format | Text Generation | 20 | 5 | 20*5 = 100 |
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 python -m pip install llama-cpp-python
After installing llama-cpp-python
, you will need a .gguf
format model from Hugging Face.
.gguf
extension, e.g. https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_0.gguf
→最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号