
Apple Silicon Mac机器学习性能测试工具
mac-ml-speed-test是一个专为Apple Silicon Mac设计的机器学习性能测试项目。通过简单脚本对比不同Mac设备上的机器学习模型速度,涵盖计算机视觉和自然语言处理等领域。项目使用PyTorch、TensorFlow等主流框架,并提供详细配置指南,便于用户进行性能评估。测试内容包括图像分类、文本分类和LLM文本生成等任务,使用CIFAR100、Food101和IMDB等数据集。此外,项目还包括与NVIDIA TITAN RTX和Google Colab免费版的性能对比,为用户提供更全面的参考数据。
A collection of simple scripts focused on benchmarking the speed of various machine learning models on Apple Silicon Macs (M1, M2, M3).
Scripts should also ideally work with CUDA (for benchmarking on other machines/Google Colab).
Note: Scripts are not designed to achieved state-of-the-art results (e.g. accuracy), they are designed to be as simple as possible to run out of the box. Most are examples straight from PyTorch/TensorFlow docs I've tweaked for specific focus on MPS (Metal Performance Shaders - Apple's GPU acceleration framework) devices + simple logging of timing. They are scrappy and likely not the best way to do things, but they are simple and easy to run.
The focus of these experiments is to get a quick benchmark across various ML problems and see how the Apple Silicon Macs perform.
The focus is on hardware comparison rather than framework to framework comparison and measuring speed rather than accuracy.
This repo contains code/results for the following experiments:
While the focus is on Apple Silicon Macs, I've included my own deep learning PC (NVIDIA TITAN RTX) as well as a Google Colab free tier instance for comparison.
If you have a brand new machine, you'll need to setup a few things before running the experiments.
The following steps will get you ready to go for all experiments (and many future machine learning experiments).
However, if you've already got conda, feel free to skip to the next section.
xcode-select --install in terminal and skip to next step)Go to https://brew.sh/ and follow the main instructions on the front page.
Run the commands on the homebrew webpage in the terminal and follow the instructions when they appear.
brew install miniforge
or
Download Miniforge3 for macOS ARM64 from: https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
~/Downloads folder:chmod +x ~/Downloads/Miniforge3-MacOSX-arm64.sh
sh ~/Downloads/Miniforge3-MacOSX-arm64.sh
source ~/miniforge3/bin/activate
If conda is working, you should have a (base) at the start of your terminal prompt.
For example: (base) daniel@Daniels-MacBook-Pro-3 ~ %
git clone https://github.com/mrdbourke/mac-ml-speed-test.git
cd mac-ml-speed-test
conda create --prefix ./env python=3.10
Note: You could also use conda create --name some-env-name python=3.10 but I prefer --prefix as it's more explicit.
conda env list
conda activate ./env
Note: This may have a few extra packages that aren't 100% needed for speed tests but help to have (e.g. JupyterLab, PrettyTable).
conda install -c conda-forge pip pandas numpy matplotlib scikit-learn jupyterlab langchain prettytable py-cpuinfo tqdm
conda install pytorch::pytorch torchvision -c pytorch
Note: MPS (Metal Performance Shaders, aka using the GPU on Apple Silicon) comes standard with PyTorch on macOS, you don't need to install anything extra. MPS can be accessed via
torch.mps, see more notes in the PyTorch documentation.
Experiment details:
| Model | Dataset | Image Size | Epochs | Num Samples | Num Classes | Problem Type |
|---|---|---|---|---|---|---|
| ResNet50 | CIFAR100 | 32x32x3 | 5 | 50,000 train, 10,000 test | 100 | Image Classification |
Example usage of pytorch_test_computer_vision_cifar100.py for 1 epoch and batch size of 32:
python pytorch_test_computer_vision_cifar100.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128, 256".
Default behaviour is to test for 5 epochs and batch sizes of "16, 32, 64, 128, 256, 512, 1024".
The following:
python pytorch_test_computer_vision_cifar100.py
Is equivalent to:
python pytorch_test_computer_vision_cifar100.py --epochs=5 --batch_sizes="16, 32, 64, 128, 256, 512, 1024"
Results will be saved to results/results_pytorch_cv/[file_name].csv where file_name is a combination of information from the experiment (see pytorch_test_computer_vision_cifar100.py for details).
Experiment details:
| Model | Dataset | Image Size | Epochs | Num Samples | Num Classes | Problem Type |
|---|---|---|---|---|---|---|
| ResNet50 | Food101 | 224x224x3 | 5 | 75,750 train, 25,250 test | 101 | Image Classification |
Note: Download Hugging Face Datasets to download Food101 dataset.
python -m pip install datasets
Example usage of pytorch_test_computer_vision_food101.py for 1 epoch and batch size of 32:
python pytorch_test_computer_vision_food101.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128, 256".
Default behaviour is to test for 3 epochs and batch sizes of "32, 64, 128".
The following:
python pytorch_test_computer_vision_food101.py
Is equivalent to:
python pytorch_test_computer_vision_food101.py --epochs=3 --batch_sizes="32, 64, 128"
Results will be saved to results/results_pytorch_cv/[file_name].csv where file_name is a combination of information from the experiment (see pytorch_test_computer_vision_food101.py for details).
Experiment details:
| Model | Dataset | Sequence Size | Epochs | Num Samples | Num Classes | Problem Type |
|---|---|---|---|---|---|---|
| DistilBERT (fine-tune top 2 layers + top Transformer block) | IMDB | 512 | 5 | 25,000 train, 25,000 test | 2 | Text Classification |
Note: The
pytorch_test_nlp.pyuses Hugging Face Transformers/Datasets/Evaluate/Accelerate to help with testing. If you get into ML, you'll likely come across these libraries, they are very useful for NLP and ML in general. The model loaded from Transformers uses PyTorch as a backend.
python -m pip install transformers datasets evaluate accelerate
Example usage of pytorch_test_nlp.py for 1 epoch and batch size of 32:
python pytorch_test_nlp.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128, 256".
Default behaviour is to test for 3 epochs and batch sizes of "16, 32, 64, 128, 256, 512" (note: without 24GB+ of RAM, running batch sizes of 256+ will likely error, for example my M1 Pro with 18GB of VRAM can only run "16, 32, 64, 128" and fails on 256 with the model/data setup in python_test_nlp.py).
The following:
python pytorch_test_nlp.py
Is equivalent to:
python pytorch_test_nlp.py --epochs=3 --batch_sizes="16, 32, 64, 128, 256, 512"
Results will be saved to results/results_pytorch_nlp/[file_name].csv where file_name is a combination of information from the experiment (see pytorch_test_nlp.py for details).
For more on running TensorFlow on macOS, see Apple's developer guide.
Note: Install TensorFlow Datasets to access Food101 dataset with TensorFlow.
python -m pip install tensorflow python -m pip install tensorflow-metal python -m pip install tensorflow_datasets
Note: TensorFlow can be run on macOS without using the GPU via
pip install tensorflow, however, if you're using an Apple Silicon Mac, you'll want to use the Metal plugin for GPU acceleration (pip install tensorflow-metal).After installing
tensorflow-metaland running the scripts, you should see something like:
2023-12-06 12:22:02.016745: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:117] Plugin optimizer for device_type GPU is enabled.
Experiment details:
| Model | Dataset | Image Size | Epochs | Num Samples | Num Classes | Problem Type |
|---|---|---|---|---|---|---|
| ResNet50 | CIFAR100 | 32x32x3 | 5 | 50,000 train, 10,000 test | 100 | Image Classification |
Example usage of tensorflow_test_computer_vision_cifar100.py for 1 epoch and batch size of 32:
python tensorflow_test_computer_vision_cifar100.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128, 256".
Default behaviour is to test for 5 epochs and batch sizes of "16, 32, 64, 128, 256, 512, 1024".
The following:
python tensorflow_test_computer_vision_cifar100.py
Is equivalent to:
python tensorflow_test_computer_vision_cifar100.py --epochs=5 --batch_sizes="16, 32, 64, 128, 256, 512, 1024"
Results will be saved to results/results_tensorflow_cv/[file_name].csv where file_name is a combination of information from the experiment (see tensorflow_test_computer_vision_cifar100.py for details).
Experiment details:
| Model | Dataset | Image Size | Epochs | Num Samples | Num Classes | Problem Type |
|---|---|---|---|---|---|---|
| ResNet50 | Food101 | 224x224x3 | 5 | 75,750 train, 25,250 test | 101 | Image Classification |
Example usage of tensorflow_test_computer_vision_food101.py for 1 epoch and batch size of 32:
python tensorflow_test_computer_vision_food101.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128".
Default behaviour is to test for 3 epochs and batch sizes of "32, 64, 128".
The following:
python tensorflow_test_computer_vision_food101.py
Is equivalent to:
python tensorflow_test_computer_vision_food101.py --epochs=3 --batch_sizes="32, 64, 128"
Results will be saved to results/results_tensorflow_cv/[file_name].csv where file_name is a combination of information from the experiment (see tensorflow_test_computer_vision_food101.py for details).
Experiment details:
| Model | Dataset | Sequence Size | Epochs | Num Samples | Num Classes | Problem Type |
|---|---|---|---|---|---|---|
| SmallTransformer (custom) | IMDB | 200 | 5 | 25,000 train, 25,000 test | 2 | Text Classification |
Example usage of tensorflow_test_nlp.py for 1 epoch and batch size of 32:
python tensorflow_test_nlp.py --epochs=1 --batch_sizes="32"
Batch sizes can be a comma-separated list of batch sizes, e.g. "32, 64, 128, 256".
Default behaviour is to test for 3 epochs and batch sizes of "16, 32, 64, 128".
The following:
python tensorflow_test_nlp.py
Is equivalent to:
python tensorflow_test_nlp.py --epochs=3 --batch_sizes="16, 32, 64, 128"
Results will be saved to results/results_tensorflow_nlp/[file_name].csv where file_name is a combination of information from the experiment (see tensorflow_test_nlp.py for details).
Experiment details:
| Model | Task | Num Questions | Num Answers | Total Generations |
|---|---|---|---|---|
| Llama 2 7B .gguf format | Text Generation | 20 | 5 | 20*5 = 100 |
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 python -m pip install llama-cpp-python
After installing llama-cpp-python, you will need a .gguf format model from Hugging Face.
.gguf extension, e.g. https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_0.gguf →

免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用 机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号