Modin is a drop-in replacement for pandas. While pandas is single-threaded, Modin lets you instantly speed up your workflows by scaling pandas so it uses all of your cores. Modin works especially well on larger datasets, where pandas becomes painfully slow or runs out of memory. Also, Modin comes with the additional APIs to improve user experience.
By simply replacing the import statement, Modin offers users effortless speed and scale for their pandas workflows:
<img src="https://github.com/modin-project/modin/raw/main/docs/img/Import.gif" style="display: block;margin-left: auto;margin-right: auto;" width="100%"></img>
In the GIFs below, Modin (left) and pandas (right) perform the same pandas operations on a 2GB dataset. The only difference between the two notebook examples is the import statement.
<table class="tg"> <thead> <tr> <th class="tg-0lax" style="text-align: center;"><img src="https://github.com/modin-project/modin/raw/7c009c747caa90554607e30b9ac2bd1b190b8c7d/docs/img/MODIN_ver2_hrz.png?raw=True" height="35px"></th> <th class="tg-0lax" style="text-align: center;"><img src="https://pandas.pydata.org/static/img/pandas.svg" height="50px"></img></th> </tr> </thead> <tbody> <tr> <td class="tg-0lax"><img src="https://github.com/modin-project/modin/raw/7c009c747caa90554607e30b9ac2bd1b190b8c7d/docs/img/Modin.gif"></img></td> <td class="tg-0lax"><img src="https://github.com/modin-project/modin/raw/7c009c747caa90554607e30b9ac2bd1b190b8c7d/docs/img/Pandas.gif"></img></td> </tr> </tbody> </table>The charts below show the speedup you get by replacing pandas with Modin based on the examples above. The example notebooks can be found here. To learn more about the speedups you could get with Modin and try out some examples on your own, check out our 10-minute quickstart guide to try out some examples on your own!
<img src="https://github.com/modin-project/modin/raw/7c009c747caa90554607e30b9ac2bd1b190b8c7d/docs/img/Modin_Speedup.svg" style="display: block;margin-left: auto;margin-right: auto;" width="100%"></img>
Modin can be installed with pip
on Linux, Windows and MacOS:
pip install "modin[all]" # (Recommended) Install Modin with Ray and Dask engines.
If you want to install Modin with a specific engine, we recommend:
pip install "modin[ray]" # Install Modin dependencies and Ray. pip install "modin[dask]" # Install Modin dependencies and Dask. pip install "modin[mpi]" # Install Modin dependencies and MPI through unidist.
To get Modin on MPI through unidist (as of unidist 0.5.0) fully working
it is required to have a working MPI implementation installed beforehand.
Otherwise, installation of modin[mpi]
may fail. Refer to
Installing with pip
section of the unidist documentation for more details about installation.
Note: Since Modin 0.30.0 we use a reduced set of Ray dependencies: ray
instead of ray[default]
.
This means that the dashboard and cluster launcher are no longer installed by default.
If you need those, consider installing ray[default]
along with modin[ray]
.
Modin automatically detects which engine(s) you have installed and uses that for scheduling computation.
Installing from conda forge using modin-all
will install Modin and three engines: Ray, Dask and
MPI through unidist.
conda install -c conda-forge modin-all
Each engine can also be installed individually (and also as a combination of several engines):
conda install -c conda-forge modin-ray # Install Modin dependencies and Ray. conda install -c conda-forge modin-dask # Install Modin dependencies and Dask. conda install -c conda-forge modin-mpi # Install Modin dependencies and MPI through unidist.
Note: Since Modin 0.30.0 we use a reduced set of Ray dependencies: ray-core
instead of ray-default
.
This means that the dashboard and cluster launcher are no longer installed by default.
If you need those, consider installing ray-default
along with modin-ray
.
Refer to Installing with conda section of the unidist documentation for more details on how to install a specific MPI implementation to run on.
To speed up conda installation we recommend using libmamba solver. To do this install it in a base environment:
conda install -n base conda-libmamba-solver
and then use it during istallation either like:
conda install -c conda-forge modin-ray --experimental-solver=libmamba
or starting from conda 22.11 and libmamba solver 22.12 versions:
conda install -c conda-forge modin-ray --solver=libmamba
If you want to choose a specific compute engine to run on, you can set the environment
variable MODIN_ENGINE
and Modin will do computation with that engine:
export MODIN_ENGINE=ray # Modin will use Ray export MODIN_ENGINE=dask # Modin will use Dask export MODIN_ENGINE=unidist # Modin will use Unidist
If you want to choose the Unidist engine, you should set the additional environment
variable UNIDIST_BACKEND
. Currently, Modin only supports MPI through unidist:
export UNIDIST_BACKEND=mpi # Unidist will use MPI backend
This can also be done within a notebook/interpreter before you import Modin:
import modin.config as modin_cfg import unidist.config as unidist_cfg modin_cfg.Engine.put("ray") # Modin will use Ray modin_cfg.Engine.put("dask") # Modin will use Dask modin_cfg.Engine.put('unidist') # Modin will use Unidist unidist_cfg.Backend.put('mpi') # Unidist will use MPI backend
Note: You should not change the engine after your first operation with Modin as it will result in undefined behavior.
On Linux, MacOS, and Windows you can install and use either Ray, Dask or MPI through unidist. There is no knowledge required to use either of these engines as Modin abstracts away all of the complexity, so feel free to pick either!
pandas Object | Modin's Ray Engine Coverage | Modin's Dask Engine Coverage | Modin's Unidist Engine Coverage |
---|---|---|---|
pd.DataFrame | <img src=https://img.shields.io/badge/api%20coverage-90.8%25-hunter.svg> | <img src=https://img.shields.io/badge/api%20coverage-90.8%25-hunter.svg> | <img src=https://img.shields.io/badge/api%20coverage-90.8%25-hunter.svg> |
pd.Series | <img src=https://img.shields.io/badge/api%20coverage-88.05%25-green.svg> | <img src=https://img.shields.io/badge/api%20coverage-88.05%25-green.svg> | <img src=https://img.shields.io/badge/api%20coverage-88.05%25-green.svg> |
pd.read_csv | ✅ | ✅ | ✅ |
pd.read_table | ✅ | ✅ | ✅ |
pd.read_parquet | ✅ | ✅ | ✅ |
pd.read_sql | ✅ | ✅ | ✅ |
pd.read_feather | ✅ | ✅ | ✅ |
pd.read_excel | ✅ | ✅ | ✅ |
pd.read_json | ✳️ | ✳️ | ✳️ |
pd.read_<other> | ✴️ | ✴️ | ✴️ |
For the complete documentation on Modin, visit our ReadTheDocs page.
Note: In local mode (without a cluster), Modin will create and manage a local (Dask or Ray) cluster for the execution.
To use Modin, you do not need to specify how to distribute the data, or even know how many cores your system has. In fact, you can continue using your previous pandas notebooks while experiencing a considerable speedup from Modin, even on a single machine. Once you've changed your import statement, you're ready to use Modin just like you would with pandas!
<img align="right" style="display:inline;" height="350" width="300" src="https://github.com/modin-project/modin/raw/7c009c747caa90554607e30b9ac2bd1b190b8c7d/docs/img/read_csv_benchmark.png?raw=true"></a>
The modin.pandas
DataFrame is an extremely light-weight parallel DataFrame.
Modin transparently distributes the data and computation so that you can continue using the same pandas API
while working with more data faster. Because it is so light-weight,
Modin provides speed-ups of up to 4x on a laptop with 4 physical cores.
In pandas, you are only able to use one core at a time when you are doing computation of
any kind. With Modin, you are able to use all of the CPU cores on your machine. Even with a
traditionally synchronous task like read_csv
, we see large speedups by efficiently
distributing the work across your entire machine.
import modin.pandas as pd df = pd.read_csv("my_dataset.csv")
Often data scientists have to switch between different tools for operating on datasets of different sizes. Processing large dataframes with pandas is slow, and pandas does not support working with dataframes that are too large to fit into the available memory. As a result, pandas workflows that work well for prototyping on a few MBs of data do not scale to tens or hundreds of GBs (depending on the size of your machine). Modin supports operating on data that does not fit in memory, so that you can comfortably work with hundreds of GBs without worrying about substantial slowdown or memory errors. With cluster and out of core support, Modin is a DataFrame library with both great single-node performance and high scalability in a cluster.
We designed Modin's architecture to be modular so we can plug in different components as they develop and improve:
<img src="https://github.com/modin-project/modin/raw/7c009c747caa90554607e30b9ac2bd1b190b8c7d/docs/img/modin_architecture.png" alt="Modin's architecture" width="75%"></img>
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项 目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号