buildkit

buildkit

高效灵活的开源构建工具包

BuildKit是一个高效的开源构建工具包,用于将源代码转换为构建产物。它提供自动垃圾回收、可扩展前端、并发依赖解析、指令缓存、缓存导入导出、嵌套构建等功能。BuildKit支持多种输出格式,采用插件化架构,可在无root权限下执行。它通过LLB中间格式定义依赖图,兼容Dockerfile等多种语言,广泛应用于Docker和Kubernetes等项目中。

BuildKit构建工具容器化缓存多平台构建Github开源项目

asciicinema example

BuildKit <!-- omit in toc -->

GitHub Release PkgGoDev CI BuildKit Status CI Frontend Status Go Report Card Codecov

BuildKit is a toolkit for converting source code to build artifacts in an efficient, expressive and repeatable manner.

Key features:

  • Automatic garbage collection
  • Extendable frontend formats
  • Concurrent dependency resolution
  • Efficient instruction caching
  • Build cache import/export
  • Nested build job invocations
  • Distributable workers
  • Multiple output formats
  • Pluggable architecture
  • Execution without root privileges

Read the proposal from https://github.com/moby/moby/issues/32925

Introductory blog post https://blog.mobyproject.org/introducing-buildkit-17e056cc5317

Join #buildkit channel on Docker Community Slack

[!NOTE] If you are visiting this repo for the usage of BuildKit-only Dockerfile features like RUN --mount=type=(bind|cache|tmpfs|secret|ssh), please refer to the Dockerfile reference.

[!NOTE] docker build uses Buildx and BuildKit by default since Docker Engine 23.0. You don't need to read this document unless you want to use the full-featured standalone version of BuildKit.

<!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE --> <!-- END doctoc generated TOC please keep comment here to allow auto update -->

Used by

BuildKit is used by the following projects:

Quick start

:information_source: For Kubernetes deployments, see examples/kubernetes.

BuildKit is composed of the buildkitd daemon and the buildctl client. While the buildctl client is available for Linux, macOS, and Windows, the buildkitd daemon is only available for Linux and *Windows currently.

The latest binaries of BuildKit are available here for Linux, macOS, and Windows.

Linux Setup

The buildkitd daemon requires the following components to be installed:

Starting the buildkitd daemon: You need to run buildkitd as the root user on the host.

$ sudo buildkitd

To run buildkitd as a non-root user, see docs/rootless.md.

The buildkitd daemon supports two worker backends: OCI (runc) and containerd.

By default, the OCI (runc) worker is used. You can set --oci-worker=false --containerd-worker=true to use the containerd worker.

We are open to adding more backends.

To start the buildkitd daemon using systemd socket activation, you can install the buildkit systemd unit files. See Systemd socket activation

The buildkitd daemon listens gRPC API on /run/buildkit/buildkitd.sock by default, but you can also use TCP sockets. See Expose BuildKit as a TCP service.

Windows Setup

See instructions and notes at docs/windows.md.

macOS Setup

Homebrew formula (unofficial) is available for macOS.

$ brew install buildkit

The Homebrew formula does not contain the daemon (buildkitd).

For example, Lima can be used for launching the daemon inside a Linux VM.

brew install lima limactl start template://buildkit export BUILDKIT_HOST="unix://$HOME/.lima/buildkit/sock/buildkitd.sock"

Build from source

To build BuildKit from source, see .github/CONTRIBUTING.md.

For a buildctl reference, see this document.

Exploring LLB

BuildKit builds are based on a binary intermediate format called LLB that is used for defining the dependency graph for processes running part of your build. tl;dr: LLB is to Dockerfile what LLVM IR is to C.

  • Marshaled as Protobuf messages
  • Concurrently executable
  • Efficiently cacheable
  • Vendor-neutral (i.e. non-Dockerfile languages can be easily implemented)

See solver/pb/ops.proto for the format definition, and see ./examples/README.md for example LLB applications.

Currently, the following high-level languages have been implemented for LLB:

Exploring Dockerfiles

Frontends are components that run inside BuildKit and convert any build definition to LLB. There is a special frontend called gateway (gateway.v0) that allows using any image as a frontend.

During development, Dockerfile frontend (dockerfile.v0) is also part of the BuildKit repo. In the future, this will be moved out, and Dockerfiles can be built using an external image.

Building a Dockerfile with buildctl

buildctl build \ --frontend=dockerfile.v0 \ --local context=. \ --local dockerfile=. # or buildctl build \ --frontend=dockerfile.v0 \ --local context=. \ --local dockerfile=. \ --opt target=foo \ --opt build-arg:foo=bar

--local exposes local source files from client to the builder. context and dockerfile are the names Dockerfile frontend looks for build context and Dockerfile location.

If the Dockerfile has a different filename it can be specified with --opt filename=./Dockerfile-alternative.

Building a Dockerfile using external frontend

External versions of the Dockerfile frontend are pushed to https://hub.docker.com/r/docker/dockerfile-upstream and https://hub.docker.com/r/docker/dockerfile and can be used with the gateway frontend. The source for the external frontend is currently located in ./frontend/dockerfile/cmd/dockerfile-frontend but will move out of this repository in the future (#163). For automatic build from master branch of this repository docker/dockerfile-upstream:master or docker/dockerfile-upstream:master-labs image can be used.

buildctl build \ --frontend gateway.v0 \ --opt source=docker/dockerfile \ --local context=. \ --local dockerfile=. buildctl build \ --frontend gateway.v0 \ --opt source=docker/dockerfile \ --opt context=https://github.com/moby/moby.git \ --opt build-arg:APT_MIRROR=cdn-fastly.deb.debian.org

Output

By default, the build result and intermediate cache will only remain internally in BuildKit. An output needs to be specified to retrieve the result.

Image/Registry

buildctl build ... --output type=image,name=docker.io/username/image,push=true

To export the image to multiple registries:

buildctl build ... --output type=image,\"name=docker.io/username/image,docker.io/username2/image2\",push=true

To export the cache embed with the image and pushing them to registry together, type registry is required to import the cache, you should specify --export-cache type=inline and --import-cache type=registry,ref=.... To export the cache to a local directly, you should specify --export-cache type=local. Details in Export cache.

buildctl build ...\ --output type=image,name=docker.io/username/image,push=true \ --export-cache type=inline \ --import-cache type=registry,ref=docker.io/username/image

Keys supported by image output:

  • name=<value>: specify image name(s)
  • push=true: push after creating the image
  • push-by-digest=true: push unnamed image
  • registry.insecure=true: push to insecure HTTP registry
  • oci-mediatypes=true: use OCI mediatypes in configuration JSON instead of Docker's
  • unpack=true: unpack image after creation (for use with containerd)
  • dangling-name-prefix=<value>: name image with prefix@<digest>, used for anonymous images
  • name-canonical=true: add additional canonical name name@<digest>
  • compression=<uncompressed|gzip|estargz|zstd>: choose compression type for layers newly created and cached, gzip is default value. estargz should be used with oci-mediatypes=true.
  • compression-level=<value>: compression level for gzip, estargz (0-9) and zstd (0-22)
  • rewrite-timestamp=true: rewrite the file timestamps to the SOURCE_DATE_EPOCH value. See docs/build-repro.md for how to specify the SOURCE_DATE_EPOCH value.
  • force-compression=true: forcefully apply compression option to all layers (including already existing layers)
  • store=true: store the result images to the worker's (e.g. containerd) image store as well as ensures that the image has all blobs in the content store (default true). Ignored if the worker doesn't have image store (e.g. OCI worker).
  • annotation.<key>=<value>: attach an annotation with the respective key and value to the built image
    • Using the extended syntaxes, annotation-<type>.<key>=<value>, annotation[<platform>].<key>=<value> and both combined with annotation-<type>[<platform>].<key>=<value>, allows configuring exactly where to attach the annotation.
    • <type> specifies what object to attach to, and can be any of manifest (the default), manifest-descriptor, index and index-descriptor
    • <platform> specifies which objects to attach to (by default, all), and is the same key passed into the platform opt, see docs/multi-platform.md.
    • See docs/annotations.md for more details.

If credentials are required, buildctl will attempt to read Docker configuration file $DOCKER_CONFIG/config.json. $DOCKER_CONFIG defaults to ~/.docker.

Local directory

The local client will copy the files directly to the client. This is useful if BuildKit is being used for building something else than container images.

buildctl build ... --output type=local,dest=path/to/output-dir

To export specific files use multi-stage builds with a scratch stage and copy the needed files into that stage with `COPY

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多