minisora

minisora

致力探索AI视频生成技术的开源社区

MiniSora是一个社区驱动的开源项目,专注于探索AI视频生成技术Sora的实现路径。该项目组织定期圆桌讨论、深入研究视频生成技术、复现相关论文并进行技术回顾。MiniSora旨在开发GPU友好、训练高效、推理快速的AI视频生成方案,推动人工智能视频生成领域的开源发展。

MiniSora开源社区视频生成SoraDiTGithub开源项目

MiniSora Community

<!-- PROJECT SHIELDS -->

[![Contributors][contributors-shield]][contributors-url] [![Forks][forks-shield]][forks-url] [![Issues][issues-shield]][issues-url] [![MIT License][license-shield]][license-url] [![Stargazers][stars-shield]][stars-url] <br />

<!-- PROJECT LOGO --> <div align="center"> <img src="assets/logo.jpg" width="600"/> <div>&nbsp;</div> <div align="center"> </div> </div> <div align="center">

English | 简体中文

</div> <p align="center"> 👋 join us on <a href="https://cdn.vansin.top/minisora.jpg" target="_blank">WeChat</a> </p>

The MiniSora open-source community is positioned as a community-driven initiative organized spontaneously by community members. The MiniSora community aims to explore the implementation path and future development direction of Sora.

  • Regular round-table discussions will be held with the Sora team and the community to explore possibilities.
  • We will delve into existing technological pathways for video generation.
  • Leading the replication of papers or research results related to Sora, such as DiT (MiniSora-DiT), etc.
  • Conducting a comprehensive review of Sora-related technologies and their implementations, i.e., "From DDPM to Sora: A Review of Video Generation Models Based on Diffusion Models".

Hot News

empty

Reproduction Group of MiniSora Community

Sora Reproduction Goals of MiniSora

  1. GPU-Friendly: Ideally, it should have low requirements for GPU memory size and the number of GPUs, such as being trainable and inferable with compute power like 8 A100 80G cards, 8 A6000 48G cards, or RTX4090 24G.
  2. Training-Efficiency: It should achieve good results without requiring extensive training time.
  3. Inference-Efficiency: When generating videos during inference, there is no need for high length or resolution; acceptable parameters include 3-10 seconds in length and 480p resolution.

MiniSora-DiT: Reproducing the DiT Paper with XTuner

https://github.com/mini-sora/minisora-DiT

Requirements

We are recruiting MiniSora Community contributors to reproduce DiT using XTuner.

We hope the community member has the following characteristics:

  1. Familiarity with the OpenMMLab MMEngine mechanism.
  2. Familiarity with DiT.

Background

  1. The author of DiT is the same as the author of Sora.
  2. XTuner has the core technology to efficiently train sequences of length 1000K.

Support

  1. Computational resources: 2*A100.
  2. Strong supports from XTuner core developer P佬@pppppM.

Recent round-table Discussions

Paper Interpretation of Stable Diffusion 3 paper: MM-DiT

Speaker: MMagic Core Contributors

Live Streaming Time: 03/12 20:00

Highlights: MMagic core contributors will lead us in interpreting the Stable Diffusion 3 paper, discussing the architecture details and design principles of Stable Diffusion 3.

PPT: FeiShu Link

<!-- Please scan the QR code with WeChat to book a live video session. <div align="center"> <img src="assets/SD3论文领读.png" width="100"/> <div>&nbsp;</div> <div align="center"> </div> </div> -->

Highlights from Previous Discussions

Night Talk with Sora: Video Diffusion Overview

ZhiHu Notes: A Survey on Generative Diffusion Model: An Overview of Generative Diffusion Models

Paper Reading Program

Recruitment of Presenters

Related Work

<h3 id="diffusion-models">01 Diffusion Models</h3>
PaperLink
1) Guided-Diffusion: Diffusion Models Beat GANs on Image SynthesisNeurIPS 21 Paper, GitHub
2) Latent Diffusion: High-Resolution Image Synthesis with Latent Diffusion ModelsCVPR 22 Paper, GitHub
3) EDM: Elucidating the Design Space of Diffusion-Based Generative ModelsNeurIPS 22 Paper, GitHub
4) DDPM: Denoising Diffusion Probabilistic ModelsNeurIPS 20 Paper, GitHub
5) DDIM: Denoising Diffusion Implicit ModelsICLR 21 Paper, GitHub
6) Score-Based Diffusion: Score-Based Generative Modeling through Stochastic Differential EquationsICLR 21 Paper, GitHub, Blog
7) Stable Cascade: Würstchen: An efficient architecture for large-scale text-to-image diffusion modelsICLR 24 Paper, GitHub, Blog
8) Diffusion Models in Vision: A SurveyTPAMI 23 Paper, GitHub
9) Improved DDPM: Improved Denoising Diffusion Probabilistic ModelsICML 21 Paper, Github
10) Classifier-free diffusion guidanceNIPS 21 Paper
11) Glide: Towards photorealistic image generation and editing with text-guided diffusion modelsPaper, Github
12) VQ-DDM: Global Context with Discrete Diffusion in Vector Quantised Modelling for Image GenerationCVPR 22 Paper, Github
13) Diffusion Models for Medical Anomaly DetectionPaper, Github
14) Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification SystemsPaper
15) DiffusionDet: Diffusion Model for Object DetectionICCV 23 Paper, Github
16) Label-efficient semantic segmentation with diffusion modelsICLR 22 Paper, Github, Project
<h3 id="diffusion-transformer">02 Diffusion Transformer</h3>
PaperLink
1) UViT: All are Worth Words: A ViT Backbone for Diffusion ModelsCVPR 23 Paper, GitHub, ModelScope
2) DiT: Scalable Diffusion Models with TransformersICCV 23 Paper, GitHub, Project, ModelScope
3) SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant TransformersArXiv 23, GitHub, ModelScope
4) FiT: Flexible Vision Transformer for Diffusion ModelArXiv 24, GitHub
5) k-diffusion: Scalable High-Resolution Pixel-Space Image Synthesis with Hourglass Diffusion TransformersArXiv 24, GitHub
6) Large-DiT: Large Diffusion TransformerGitHub
7) VisionLLaMA: A Unified LLaMA Interface for Vision TasksArXiv 24, GitHub
8) Stable Diffusion 3: MM-DiT: Scaling Rectified Flow Transformers for High-Resolution Image SynthesisPaper, Blog
9) PIXART-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image GenerationArXiv 24, Project
10) PIXART-α: Fast Training of Diffusion Transformer for Photorealistic

编辑推荐精选

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

下拉加载更多