minisora

minisora

致力探索AI视频生成技术的开源社区

MiniSora是一个社区驱动的开源项目,专注于探索AI视频生成技术Sora的实现路径。该项目组织定期圆桌讨论、深入研究视频生成技术、复现相关论文并进行技术回顾。MiniSora旨在开发GPU友好、训练高效、推理快速的AI视频生成方案,推动人工智能视频生成领域的开源发展。

MiniSora开源社区视频生成SoraDiTGithub开源项目

MiniSora Community

<!-- PROJECT SHIELDS -->

[![Contributors][contributors-shield]][contributors-url] [![Forks][forks-shield]][forks-url] [![Issues][issues-shield]][issues-url] [![MIT License][license-shield]][license-url] [![Stargazers][stars-shield]][stars-url] <br />

<!-- PROJECT LOGO --> <div align="center"> <img src="assets/logo.jpg" width="600"/> <div>&nbsp;</div> <div align="center"> </div> </div> <div align="center">

English | 简体中文

</div> <p align="center"> 👋 join us on <a href="https://cdn.vansin.top/minisora.jpg" target="_blank">WeChat</a> </p>

The MiniSora open-source community is positioned as a community-driven initiative organized spontaneously by community members. The MiniSora community aims to explore the implementation path and future development direction of Sora.

  • Regular round-table discussions will be held with the Sora team and the community to explore possibilities.
  • We will delve into existing technological pathways for video generation.
  • Leading the replication of papers or research results related to Sora, such as DiT (MiniSora-DiT), etc.
  • Conducting a comprehensive review of Sora-related technologies and their implementations, i.e., "From DDPM to Sora: A Review of Video Generation Models Based on Diffusion Models".

Hot News

empty

Reproduction Group of MiniSora Community

Sora Reproduction Goals of MiniSora

  1. GPU-Friendly: Ideally, it should have low requirements for GPU memory size and the number of GPUs, such as being trainable and inferable with compute power like 8 A100 80G cards, 8 A6000 48G cards, or RTX4090 24G.
  2. Training-Efficiency: It should achieve good results without requiring extensive training time.
  3. Inference-Efficiency: When generating videos during inference, there is no need for high length or resolution; acceptable parameters include 3-10 seconds in length and 480p resolution.

MiniSora-DiT: Reproducing the DiT Paper with XTuner

https://github.com/mini-sora/minisora-DiT

Requirements

We are recruiting MiniSora Community contributors to reproduce DiT using XTuner.

We hope the community member has the following characteristics:

  1. Familiarity with the OpenMMLab MMEngine mechanism.
  2. Familiarity with DiT.

Background

  1. The author of DiT is the same as the author of Sora.
  2. XTuner has the core technology to efficiently train sequences of length 1000K.

Support

  1. Computational resources: 2*A100.
  2. Strong supports from XTuner core developer P佬@pppppM.

Recent round-table Discussions

Paper Interpretation of Stable Diffusion 3 paper: MM-DiT

Speaker: MMagic Core Contributors

Live Streaming Time: 03/12 20:00

Highlights: MMagic core contributors will lead us in interpreting the Stable Diffusion 3 paper, discussing the architecture details and design principles of Stable Diffusion 3.

PPT: FeiShu Link

<!-- Please scan the QR code with WeChat to book a live video session. <div align="center"> <img src="assets/SD3论文领读.png" width="100"/> <div>&nbsp;</div> <div align="center"> </div> </div> -->

Highlights from Previous Discussions

Night Talk with Sora: Video Diffusion Overview

ZhiHu Notes: A Survey on Generative Diffusion Model: An Overview of Generative Diffusion Models

Paper Reading Program

Recruitment of Presenters

Related Work

<h3 id="diffusion-models">01 Diffusion Models</h3>
PaperLink
1) Guided-Diffusion: Diffusion Models Beat GANs on Image SynthesisNeurIPS 21 Paper, GitHub
2) Latent Diffusion: High-Resolution Image Synthesis with Latent Diffusion ModelsCVPR 22 Paper, GitHub
3) EDM: Elucidating the Design Space of Diffusion-Based Generative ModelsNeurIPS 22 Paper, GitHub
4) DDPM: Denoising Diffusion Probabilistic ModelsNeurIPS 20 Paper, GitHub
5) DDIM: Denoising Diffusion Implicit ModelsICLR 21 Paper, GitHub
6) Score-Based Diffusion: Score-Based Generative Modeling through Stochastic Differential EquationsICLR 21 Paper, GitHub, Blog
7) Stable Cascade: Würstchen: An efficient architecture for large-scale text-to-image diffusion modelsICLR 24 Paper, GitHub, Blog
8) Diffusion Models in Vision: A SurveyTPAMI 23 Paper, GitHub
9) Improved DDPM: Improved Denoising Diffusion Probabilistic ModelsICML 21 Paper, Github
10) Classifier-free diffusion guidanceNIPS 21 Paper
11) Glide: Towards photorealistic image generation and editing with text-guided diffusion modelsPaper, Github
12) VQ-DDM: Global Context with Discrete Diffusion in Vector Quantised Modelling for Image GenerationCVPR 22 Paper, Github
13) Diffusion Models for Medical Anomaly DetectionPaper, Github
14) Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification SystemsPaper
15) DiffusionDet: Diffusion Model for Object DetectionICCV 23 Paper, Github
16) Label-efficient semantic segmentation with diffusion modelsICLR 22 Paper, Github, Project
<h3 id="diffusion-transformer">02 Diffusion Transformer</h3>
PaperLink
1) UViT: All are Worth Words: A ViT Backbone for Diffusion ModelsCVPR 23 Paper, GitHub, ModelScope
2) DiT: Scalable Diffusion Models with TransformersICCV 23 Paper, GitHub, Project, ModelScope
3) SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant TransformersArXiv 23, GitHub, ModelScope
4) FiT: Flexible Vision Transformer for Diffusion ModelArXiv 24, GitHub
5) k-diffusion: Scalable High-Resolution Pixel-Space Image Synthesis with Hourglass Diffusion TransformersArXiv 24, GitHub
6) Large-DiT: Large Diffusion TransformerGitHub
7) VisionLLaMA: A Unified LLaMA Interface for Vision TasksArXiv 24, GitHub
8) Stable Diffusion 3: MM-DiT: Scaling Rectified Flow Transformers for High-Resolution Image SynthesisPaper, Blog
9) PIXART-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image GenerationArXiv 24, Project
10) PIXART-α: Fast Training of Diffusion Transformer for Photorealistic

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多