Awesome-LLM-Healthcare

Awesome-LLM-Healthcare

大语言模型在医疗保健领域应用的全面资源集

该项目汇集了医疗保健领域大语言模型(LLM)的研究和应用资源。内容包括通用和专业医疗LLM、多模态医疗LLM以及LLM驱动的医疗智能助手等方向的最新进展。此外还涵盖了LLM在医疗领域的评估策略、相关综述和代码库链接。这一资源集对于研究和开发医疗健康AI应用的人员具有重要参考价值。

大语言模型医疗AI医学LLM多模态LLM医疗评估Github开源项目

Large Language Models Illuminate a Progressive Pathway to Artificial Healthcare Assistant: A Review

🔔 News

<!-- - 💥 [2023/09/15] Our survey is released! See [The Rise and Potential of Large Language Model Based Agents: A Survey](https://arxiv.org/abs/2309.07864) for the paper! -->
  • 💥 [2023/11/06] Our review paper is available at here.
  • ✨ [2023/11/03] We create this repository to maintain a paper list on Large Language Models (LLMs) in Medicine.
<div align=center><img src="./assets/main.png" width="90%" /></div>

Introduction

In the fast-evolving landscape of artificial intelligence, Large Language Models (LLMs) have emerged as groundbreaking tools with the potential to emulate complex human linguistic abilities. Their profound impact on healthcare, a field at the crossroads of multifaceted data and intricate decision-making, is of immense interest. This repository delves into the integration challenges and showcases the breadth of LLMs' applications within the medical sphere.

Herein, we offer a curated anthology that navigates through the realm of general-purpose and specialized LLMs, elucidating their roles in enhancing medical research, streamlining clinical operations, and supporting diagnostic processes. We cast a spotlight on multimodal LLMs, championing their sophistication in harmonizing varied data streams such as medical imagery and electronic health records (EHRs) to refine diagnostic precision. Advancing into the frontiers of innovation, we explore LLM-empowered autonomous healthcare agents, scrutinizing their capacity for personalized care and intricate clinical reasoning. Additionally, we present a synthesis of evaluative strategies critical for verifying the dependability and security of LLMs within medical settings.

Our extensive analysis sheds light on the transformative promise LLMs hold for healthcare's future. Yet, we underscore the indispensable call for ongoing refinement and ethical vigilance as precursors to their successful clinical integration.

Please note: This repository's scope is centered on the technological evolution of LLMs in medicine. For insights into clinical deployments and applications of LLMs, we invite you to consult our comprehensive review.

We sincerely value all contributions, whether through pull requests, issue reports, emails, or other forms of communication.

Table of Content (ToC)

Evaluating General-Purpose LLMs in Medicine via Prompting

  • [2023/11] Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine Harsha Nori et al. arXiv. [paper]
  • [2023/10] Exploring the Boundaries of GPT-4 in Radiology Liu et al. EMNLP 2023 main. [paper]
  • [2023/08] Evaluating large language models on medical evidence summarization. Liyan Tang et al. npj Digital Medicine. [paper]
  • [2023/07] Evaluating Large Language Models for Radiology Natural Language Processing. Zhengliang Liu et al. arXiv. [paper]
  • [2023/07] Advanced prompting as a catalyst: Empowering large language models in the management of gastrointestinal cancers Jiajia Yuan et al. The Innovation Medicine. [paper]
  • [2023/04] Are Large Language Models Ready for Healthcare? A Comparative Study on Clinical Language Understanding. Yuqing Wang et al. arXiv. [paper]

Specialized Medical LLMs

  • [2023/12] Towards Accurate Differential Diagnosis with Large Language Models Daniel McDuff et al. arXiv. [paper]
  • [2023/11] MEDITRON-70B: Scaling Medical Pretraining for Large Language Models Zeming Chen et al. arXiv. [paper][code]
  • [2023/11] Taiyi: A Bilingual Fine-Tuned Large Language Model for Diverse Biomedical Tasks Ling Luo et al. arXiv. [paper][code]
  • [2023/11] HuatuoGPT-II, One-stage Training for Medical Adaption of LLMs Junying Chen et al. arXiv. [paper][code]
  • [2023/10] AlpaCare:Instruction-tuned Large Language Models for Medical Application Zhang et al. arXiv. [paper] [code]
  • [2023/10] ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Report Generation Based on Multi-institution and Multi-system Data Zhong et al. arXiv. [paper]
  • [2023/10] Publicly Shareable Clinical Large Language Model Built on Synthetic Clinical Notes Sunjun Kweon et al. arXiv. [paper] [code]
  • [2023/09] HealGPT GR-Tech. [code] [demo]
  • [2023/09] MedChatZH: a Better Medical Adviser Learns from Better Instructions Tan et al. arXiv. [paper] [code]
  • [2023/09] CPLLM: Clinical Prediction with Large Language Models Shoham et al. arXiv. [paper]
  • [2023/09] Radiology-Llama2: Best-in-Class Large Language Model for Radiology Liu et al. arXiv. [paper]
  • [2023/08] Zhongjing: Enhancing the Chinese Medical Capabilities of Large Language Model through Expert Feedback and Real-world Multi-turn Dialogue Songhua Yang et al. arXiv. [paper] [code]
  • [2023/08] DISC-MedLLM: Bridging General Large Language Models and Real-World Medical Consultation Zhijie Bao et al. arXiv. [paper] [code]
  • [2023/08] CareGPT: Medical LLM, Open Source Driven for a Healthy Future Rongsheng Wang et al. [code]
  • [2023/07] HuangDi: A Generative Large Language Model for Ancient Chinese Medical Texts Jundong Zhang et al. [code]
  • [2023/07] MING: A Chinese Medical Consultation Large Model Yusheng Liao et al. [code]
  • [2023/06] TCMLLM Xuezhong Zhou et al. [code]
  • [2023/06] PULSE OpenMedLab. [code]
  • [2023/06] Sunsimiao: Chinese Medicine LLM Xin Yan et al. [code]
  • [2023/06] ShenNong-TCM: A Traditional Chinese Medicine Large Language Model Wei Zhu et al. [code]
  • [2023/06] Radiology-GPT: A Large Language Model for Radiology Zhengliang Liu et al. arXiv. [paper] [code]
  • [2023/06] MedicalGPT: Training Medical GPT Model Ming Xu et al. [code]
  • [2023/06] ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data and Comprehensive Evaluation Guangyu Wang et al. arXiv. [paper]
  • [2023/05] CAMEL: Clinically Adapted Model Enhanced from LLaMA Sunjun Kweon et al. [code] [blog]
  • [2023/05] Clinfo.AI: Answer Clinical Questions Grounded in Medical Literature Alejandro Lozano et al. [code]
  • [2023/05] Towards Expert-Level Medical Question Answering with Large Language Models Karan Singhal et al. arXiv. [paper]
  • [2023/05] CMLM-ZhongJing: Large Language Model is Good Story Listener Yanlan Kang et al. [code]
  • [2023/05] QiZhenGPT: An Open Source Chinese Medical Large Language Model Yao Chang et al. [code]
  • [2023/05] HuatuoGPT, towards Taming Language Model to Be a Doctor Hongbo Zhang et al. arXiv. [paper] [code]
  • [2023/05] Clinical Camel: An Open Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding Toma et al. arXiv. [paper] [code]
  • [2023/04] BianQue: Balancing the Questioning and Suggestion Ability of Health LLMs with Multi-turn Health Conversations Polished by ChatGPT Yirong Chen et al. arXiv. [paper] [code]
  • [2023/04] ChatMed: A Chinese Medical Large Language Model Wei Zhu et al. [code]
  • [2023/04] DoctorGLM: Fine-tuning your Chinese Doctor is not a Herculean Task Honglin Xiong et al. arXiv. [paper] [code]
  • [2023/04] PMC-LLaMA: Towards Building Open-source Language Models for Medicine Chaoyi Wu et al. arXiv. [paper] [code]
  • [2023/04] HuaTuo: Tuning LLaMA Model with Chinese Medical Knowledge Haochun Wang et al. arXiv. [paper] [code]
  • [2023/04] Doctor Dignity Siraj Raval et al. [code]
  • [2023/04] MedAlpaca--An Open-Source Collection of Medical Conversational AI Models and Training Data Tianyu Han et al. arXiv. [paper] [code]
  • [2023/03] Palmyra-Large Parameter Autoregressive Language Model Writer Engineering team. [code]
  • [2023/03] ChatGLM-Med Haochun Wang et al. [code]
  • [2023/03] ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge Yunxiang Li et al. Cureus. [paper] [code]
  • [2022/12] A large language model for electronic health records Xi Yang et al. npj Digital Medicine. [paper] [code]
  • [2022/12] Large language models encode clinical knowledge Karan Singhal et al. Nature. [paper] [code]
  • [2022/10] Health system-scale language models are all-purpose prediction engines Lavender Yao Jiang et al. Nature. [paper] [code]

Multimodal LLMs in Medicine

  • [2023/12] A Foundational Multimodal Vision Language AI Assistant for Human Pathology Ming Y. Liu et al. arXiv, [paper]
  • [2023/10] Qilin-Med-VL: Towards Chinese Large Vision-Language Model for General Healthcare Junling Liu et al. arXiv. [paper] [code]
  • [2023/08] ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders Shawn Xu et al. arXiv. [paper]
  • [2023/08] Towards Generalist Foundation Model for Radiology by Leveraging Web-scale 2D&3D Medical Data Chaoyi Wu et al. arXiv. [paper] [code]
  • [2023/08] BioMedGPT: Open Multimodal Generative Pre-trained Transformer for BioMedicine Yizhen Luo et al. arXiv. [paper] [code]
  • [2023/07] Multimodal LLMs for health grounded in individual-specific data Anastasiya Belyaeva et al. arXiv. [paper]

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多