table-transformer

table-transformer

基于深度学习的表格提取与结构识别模型

Table Transformer (TATR)是一种基于对象检测的深度学习模型,用于从PDF和图像中提取表格。该模型支持表格检测、结构识别和功能分析,并提供完整的训练和推理代码。TATR还发布了在PubTables-1M等大规模数据集上的预训练模型权重,有助于实现高精度的表格提取和分析。

Table Transformer表格提取深度学习目标检测PubTables-1MGithub开源项目

表格转换器 (TATR)

一种基于目标检测的深度学习模型,用于从PDF和图像中提取表格。

首次提出于"PubTables-1M:面向非结构化文档的全面表格提取"

table_extraction_v2

本仓库还包含以下论文的官方代码:

注意:如果您想使用表格转换器提取自己的表格,以下是一些有用的信息:

  • TATR可以训练以适用于多个文档领域,这里包含了训练自己模型所需的一切。但目前只提供了在PubTables-1M数据集上训练的TATR预训练模型权重。(有关如何训练自己的多领域模型,请参阅附加文档。)
  • TATR是一个从图像输入识别表格的目标检测模型。基于TATR构建的推理代码需要文本提取(来自OCR或直接从PDF)作为单独输入,以便在其HTML或CSV输出中包含文本。

下面提供了有关该项目的更多信息,包括数据、训练、评估和推理代码,供用户和研究人员使用。

新闻

2023年8月22日:我们发布了3个新的TATR-v1.1预训练模型(分别在1. PubTables-1M、2. FinTabNet.c和3. 两个数据集合并上训练),详情请参阅我们的论文
2023年4月19日:我们最新的论文(链接链接)已被ICDAR 2023接受。
2023年3月9日:我们在官方训练脚本中增加了更多图像裁剪(与我们最新论文中的做法相同),并更新了代码和environment.yml,使用Python 3.10.9、PyTorch 1.13.1和Torchvision 0.14.1等。
2023年3月7日:我们发布了一个新的简单推理流程用于TATR。现在您可以轻松地从图像中检测和识别表格,并将它们转换为HTML或CSV。
2023年3月7日:我们发布了一个脚本集合,用于创建TATR的训练数据并规范化已有的数据集,如FinTabNet和SciTSR。
2023年3月1日:新论文"对齐表格结构识别的基准数据集"现已在arXiv上发布。
2022年11月25日:我们已将完整的PubTables-1M数据集另外提供在Hugging Face上下载。
2022年5月5日:我们发布了在PubTables-1M上训练的表格结构识别模型的预训练权重。
2022年3月23日:我们的论文"GriTS:用于表格结构识别的网格表格相似度度量"现已在arXiv上发布
2022年3月4日:我们发布了在PubTables-1M上训练的表格检测模型的预训练权重。
2022年3月3日:"PubTables-1M:面向非结构化文档的全面表格提取"已被CVPR 2022接受。
2021年11月21日:我们更新的论文"PubTables-1M:面向非结构化文档的全面表格提取"已在arXiv上发布。
2021年10月21日:完整的PubTables-1M数据集已在Microsoft Research Open Data上正式发布。
2021年6月8日:表格转换器(TATR)项目的初始版本发布。

PubTables-1M

PubTables-1M的目标是创建一个大型、详细、高质量的数据集,用于训练和评估各种用于表格检测表格结构识别功能分析任务的模型。

它包含:

  • 575,305个包含表格的已注释文档页面,用于表格检测。
  • 947,642个完全注释的表格,包括文本内容和完整位置(边界框)信息,用于表格结构识别和功能分析。
  • 所有表格行、列和单元格(包括空白单元格)的完整边界框,以图像和PDF坐标表示,以及其他注释结构,如列标题和投影行标题。
  • 所有表格和页面的渲染图像。
  • 每个表格和页面图像中出现的所有单词的边界框和文本。
  • 当前模型训练中未使用的其他单元格属性。

此外,标题中的单元格经过规范化处理,我们实施了多个质量控制步骤,以确保注释尽可能无噪声。更多详情,请参阅我们的论文

预训练模型权重

我们为表格检测和表格结构识别提供了不同的预训练模型。 <b>表格检测:</b>

<table> <thead> <tr style="text-align: right;"> <th>模型</th> <th>训练数据</th> <th>模型卡片</th> <th>文件</th> <th>大小</th> </tr> </thead> <tbody> <tr style="text-align: right;"> <td>DETR R18</td> <td>PubTables-1M</td> <td><a href="https://huggingface.co/bsmock/tatr-pubtables1m-v1.0">模型卡片</a></td> <td><a href="https://huggingface.co/bsmock/tatr-pubtables1m-v1.0/resolve/main/pubtables1m_detection_detr_r18.pth">权重</a></td> <td>110 MB</td> </tr> </tbody> </table>

<b>表格结构识别:</b>

<table> <thead> <tr style="text-align: left;"> <th>模型</th> <th>训练数据</th> <th>模型卡片</th> <th>文件</th> <th>大小</th> </tr> </thead> <tbody> <tr style="text-align: left;"> <td>TATR-v1.0</td> <td>PubTables-1M</td> <td><a href="https://huggingface.co/bsmock/tatr-pubtables1m-v1.0">模型卡片</a></td> <td><a href="https://huggingface.co/bsmock/tatr-pubtables1m-v1.0/resolve/main/pubtables1m_structure_detr_r18.pth">权重</a></td> <td>110 MB</td> </tr> <tr style="text-align: left;"> <td>TATR-v1.1-Pub</td> <td>PubTables-1M</td> <td><a href="https://huggingface.co/bsmock/TATR-v1.1-Pub">模型卡片</a></td> <td><a href="https://huggingface.co/bsmock/TATR-v1.1-Pub/resolve/main/TATR-v1.1-Pub-msft.pth">权重</a></td> <td>110 MB</td> </tr> <tr style="text-align: left;"> <td>TATR-v1.1-Fin</td> <td>FinTabNet.c</td> <td><a href="https://huggingface.co/bsmock/TATR-v1.1-Fin">模型卡片</a></td> <td><a href="https://huggingface.co/bsmock/TATR-v1.1-Fin/resolve/main/TATR-v1.1-Fin-msft.pth">权重</a></td> <td>110 MB</td> </tr> <tr style="text-align: left;"> <td>TATR-v1.1-All</td> <td>PubTables-1M + FinTabNet.c</td> <td><a href="https://huggingface.co/bsmock/TATR-v1.1-All">模型卡片</a></td> <td><a href="https://huggingface.co/bsmock/TATR-v1.1-All/resolve/main/TATR-v1.1-All-msft.pth">权重</a></td> <td>110 MB</td> </tr> </tbody> </table>

评估指标

<b>表格检测:</b>

<table> <thead> <tr style="text-align: right;"> <th>模型</th> <th>测试数据</th> <th>AP50</th> <th>AP75</th> <th>AP</th> <th>AR</th> </tr> </thead> <tbody> <tr style="text-align: right;"> <td>DETR R18</td> <td>PubTables-1M</td> <td>0.995</td> <td>0.989</td> <td>0.970</td> <td>0.985</td> </tr> </tbody> </table>

<b>表格结构识别:</b>

<table> <thead> <tr style="text-align: right;"> <th>模型</th> <th>测试数据</th> <th>AP50</th> <th>AP75</th> <th>AP</th> <th>AR</th> <th>GriTS<sub>Top</sub></th> <th>GriTS<sub>Con</sub></th> <th>GriTS<sub>Loc</sub></th> <th>Acc<sub>Con</sub></th> </tr> </thead> <tbody> <tr style="text-align: right;"> <td>TATR-v1.0</td> <td>PubTables-1M</td> <td>0.970</td> <td>0.941</td> <td>0.902</td> <td>0.935</td> <td>0.9849</td> <td>0.9850</td> <td>0.9786</td> <td>0.8243</td> </tr> </tbody> </table>

训练和评估数据

PubTables-1M可从微软研究院开放数据下载。 我们还将完整的档案集上传到了Hugging Face。

Microsoft Research Open Data上的数据集包含5个tar.gz文件:

  • PubTables-1M-Image_Page_Detection_PASCAL_VOC.tar.gz:用于检测模型的训练和评估数据
    • /images:575,305个JPG文件;每个页面图像对应一个文件
    • /train:460,589个XML文件,包含PASCAL VOC格式的边界框
    • /test:57,125个XML文件,包含PASCAL VOC格式的边界框
    • /val:57,591个XML文件,包含PASCAL VOC格式的边界框
  • PubTables-1M-Image_Page_Words_JSON.tar.gz:每个页面图像中所有单词的边界框和文本内容
    • 每个页面图像对应一个JSON文件(外加一些未使用的额外文件)
  • PubTables-1M-Image_Table_Structure_PASCAL_VOC.tar.gz:用于结构(和功能分析)模型的训练和评估数据
    • /images:947,642个JPG文件;每个页面图像对应一个文件
    • /train:758,849个XML文件,包含PASCAL VOC格式的边界框
    • /test:93,834个XML文件,包含PASCAL VOC格式的边界框
    • /val:94,959个XML文件,包含PASCAL VOC格式的边界框
  • PubTables-1M-Image_Table_Words_JSON.tar.gz:每个裁剪后的表格图像中所有单词的边界框和文本内容
    • 每个裁剪后的表格图像对应一个JSON文件(外加一些未使用的额外文件)
  • PubTables-1M-PDF_Annotations_JSON.tar.gz:源PubMed PDF中出现的所有表格的详细注释。所有注释都采用PDF坐标。
    • 401,733个JSON文件;每个源PDF对应一个文件

从命令行下载:

  1. 用网络浏览器访问数据集主页,点击左上角的下载按钮。这将创建一个从Azure下载数据集的链接,其中包含为您生成的唯一访问令牌,链接形如 https://msropendataset01.blob.core.windows.net/pubtables1m?[SAS_TOKEN_HERE]
  2. 然后,您可以使用命令行工具azcopy通过以下命令下载所有文件:
azcopy copy "https://msropendataset01.blob.core.windows.net/pubtables1m?[SAS_TOKEN_HERE]" "/path/to/your/download/folder/" --recursive

然后使用以下命令在命令行中解压每个压缩包:

tar -xzvf yourfile.tar.gz

代码安装

使用yml文件创建conda环境并激活,步骤如下:

conda env create -f environment.yml
conda activate tables-detr

模型训练

该代码为两组不同的表格提取任务训练模型:

  1. 表格检测
  2. 表格结构识别 + 功能分析

有关这些任务和模型的详细描述,请参阅论文。

要进行训练,您需要cdsrc目录并指定:1. 数据集路径,2. 任务类型(检测或结构),3. 配置文件路径,其中包含架构和训练的超参数。

训练检测模型:

python main.py --data_type detection --config_file detection_config.json --data_root_dir /path/to/detection_data

训练结构识别模型:

python main.py --data_type structure --config_file structure_config.json --data_root_dir /path/to/structure_data

评估

评估代码计算检测模型和结构模型的标准目标检测指标(AP、AP50等)。 在运行结构模型的评估时,它还计算表格结构识别的网格表格相似度(GriTS)指标。 GriTS是表格单元格正确性的度量,定义为所有表格中每个单元格的平均正确性。 GriTS可以基于以下几点衡量预测单元格的正确性:1. 仅考虑单元格拓扑结构,2. 单元格拓扑结构和每个单元格报告的边界框位置,3. 单元格拓扑结构和每个单元格报告的文本内容。 有关GriTS的更多详细信息,请参阅我们的论文。

计算检测模型的目标检测指标:

python main.py --mode eval --data_type detection --config_file detection_config.json --data_root_dir /path/to/pascal_voc_detection_data --model_load_path /path/to/detection_model  

计算结构识别模型的目标检测和GriTS指标:

python main.py --mode eval --data_type structure --config_file structure_config.json --data_root_dir /path/to/pascal_voc_structure_data --model_load_path /path/to/structure_model --table_words_dir /path/to/json_table_words_data

可选地,您可以添加标志来控制并行化、保存详细指标和保存可视化:

--device cpu: 将默认设备从cuda更改为cpu。 --batch_size 4: 控制模型前向传播期间使用的批量大小。 --eval_pool_size 4: 控制GriTS指标计算期间CPU并行化的工作池大小。 --eval_step 2: 控制在将所有样本传递给并行化工作池进行GriTS指标计算之前,要累积的已处理输入数据批次数。 --debug: 创建并保存模型推理的可视化。对于每个输入图像"PMC1234567_table_0.jpg",这将保存两个可视化:"PMC1234567_table_0_bboxes.jpg"包含模型输出的边界框,"PMC1234567_table_0_cells.jpg"包含后处理后的最终表格单元格边界框。默认情况下,这些保存在当前目录下的新文件夹"debug"中。 --debug_save_dir /path/to/folder: 指定保存可视化的文件夹。 --test_max_size 500: 在随机抽样的数据子集上运行评估。适用于快速验证和检查。

微调和其他模型训练场景

如果模型训练中断,可以通过使用标志--model_load_path /path/to/model.pth并指定包含保存的优化器状态的字典文件的路径来轻松恢复。

如果您想通过微调保存的检查点(如model_20.pth)来重新开始训练,请使用标志--model_load_path /path/to/model_20.pth和标志--load_weights_only来表明恢复训练不需要之前的优化器状态。

无论是微调还是从头开始训练新模型,您都可以选择创建一个具有不同于我们使用的默认参数的新配置文件。使用以下方式指定新的配置文件:--config_file /path/to/new_structure_config.json。创建新的配置文件很有用,例如,如果您想在微调期间使用不同的学习率lr

或者,配置文件中的许多参数都可以使用相关的标志作为命令行参数指定。作为命令行参数指定的任何参数都会覆盖配置文件中该参数的值。

引用

我们的工作可以使用以下方式引用:

[此处省略引用文献的BibTeX格式内容,因为它们不需要翻译]

贡献

本项目欢迎贡献和建议。大多数贡献要求您同意贡献者许可协议(CLA),声明您有权并且确实授予我们使用您贡献的权利。有关详细信息,请访问https://cla.opensource.microsoft.com。

当您提交拉取请求时,CLA机器人将自动确定您是否需要提供CLA,并相应地修饰PR(例如,状态检查、评论)。只需按照机器人提供的说明操作即可。您只需在所有使用我们CLA的仓库中执行一次此操作。

本项目已采用Microsoft开源行为准则。 有关更多信息,请参阅行为准则常见问题解答或联系opencode@microsoft.com获取任何其他问题或意见。

商标

本项目可能包含项目、产品或服务的商标或标识。Microsoft商标或标识的授权使用必须遵循Microsoft商标和品牌指南。 在本项目的修改版本中使用Microsoft商标或标识不得引起混淆或暗示Microsoft赞助。 任何第三方商标或标识的使用均受这些第三方的政策约束。

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多