Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about IoT basics. Each lesson includes pre- and post-lesson quizzes, written instructions to complete the lesson, a solution, an assignment and more. Our project-based pedagogy allows you to learn while building, a proven way for new skills to 'stick'.
The projects cover the journey of food from farm to table. This includes farming, logistics, manufacturing, retail and consumer - all popular industry areas for IoT devices.
Sketchnote by Nitya Narasimhan. Click the image for a larger version.
Hearty thanks to our authors Jen Fox, Jen Looper, Jim Bennett, and our sketchnote artist Nitya Narasimhan.
Thanks as well to our team of Microsoft Learn Student Ambassadors who have been reviewing and translating this curriculum - Aditya Garg, Anurag Sharma, Arpita Das, Aryan Jain, Bhavesh Suneja, Faith Hunja, Lateefah Bello, Manvi Jha, Mireille Tan, Mohammad Iftekher (Iftu) Ebne Jalal, Mohammad Zulfikar, Priyanshu Srivastav, Thanmai Gowducheruvu, and Zina Kamel.
Meet the team!
Gif by Mohit Jaisal
🎥 Click the image above for a video about the project!
Teachers, we have included some suggestions on how to use this curriculum. If you would like to create your own lessons, we have also included a lesson template.
Students, to use this curriculum on your own, fork the entire repo and complete the exercises on your own, starting with a pre-lecture quiz, then reading the lecture and completing the rest of the activities. Try to create the projects by comprehending the lessons rather than copying the solution code; however that code is available in the /solutions folders in each project-oriented lesson. Another idea would be to form a study group with friends and go through the content together. For further study, we recommend Microsoft Learn.
For a video overview of this course, check out this video:
🎥 Click the image above for a video about the project!
We have chosen two pedagogical tenets while building this curriculum: ensuring that it is project-based and that it includes frequent quizzes. By the end of this series, students will have built a plant monitoring and watering system, a vehicle tracker, a smart factory setup to track and check food, and a voice-controlled cooking timer, and will have learned the basics of the Internet of Things including how to write device code, connect to the cloud, analyze telemetry and run AI on the edge.
By ensuring that the content aligns with projects, the process is made more engaging for students and retention of concepts will be augmented.
In addition, a low-stakes quiz before a class sets the intention of the student towards learning a topic, while a second quiz after class ensures further retention. This curriculum was designed to be flexible and fun and can be taken in whole or in part. The projects start small and become increasingly complex by the end of the 12 week cycle.
Each project is based around real-world hardware available to students and hobbyists. Each project looks into the specific project domain, providing relevant background knowledge. To be a successful developer it helps to understand the domain in which you are solving problems, providing this background knowledge allows students to think about their IoT solutions and learnings in the context of the kind of real-world problem that they might be asked to solve as an IoT developer. Students learn the 'why' of the solutions they are building, and get an appreciation of the end user.
We have two choices of IoT hardware to use for the projects depending on personal preference, programming language knowledge or preferences, learning goals and availability. We have also provided a 'virtual hardware' version for those who don't have access to hardware, or want to learn more before committing to a purchase. You can read more and find a 'shopping list' on the hardware page, including links to buy complete kits from our friends at Seeed Studio.
💁 Find our Code of Conduct, Contributing, and Translation guidelines. We welcome your constructive feedback!
A note about quizzes: All quizzes are contained in this app, for 48 total quizzes of three questions each. They are linked from within the lessons but the quiz app can be run locally; follow the instruction in the
quiz-app
folder. They are gradually being localized.
Project Name | Concepts Taught | Learning Objectives | Linked Lesson | |
---|---|---|---|---|
01 | Getting started | Introduction to IoT | Learn the basic principles of IoT and the basic building blocks of IoT solutions such as sensors and cloud services whilst you are setting up your first IoT device | Introduction to IoT |
02 | Getting started | A deeper dive into IoT | Learn more about the components of an IoT system, as well as microcontrollers and single-board computers | A deeper dive into IoT |
03 | Getting started | Interact with the physical world with sensors and actuators | Learn about sensors to gather data from the physical world, and actuators to send feedback, whilst you build a nightlight | Interact with the physical world with sensors and actuators |
04 | Getting started | Connect your device to the Internet | Learn about how to connect an IoT device to the Internet to send and receive messages by connecting your nightlight to an MQTT broker | Connect your device to the Internet |
05 | Farm | Predict plant growth | Learn how to predict plant growth using temperature data captured by an IoT device | Predict plant growth |
06 | Farm | Detect soil moisture | Learn how to detect soil moisture and calibrate a soil moisture sensor | Detect soil moisture |
07 | Farm | Automated plant watering | Learn how to automate and time watering using a relay and MQTT | Automated plant watering |
08 | Farm | Migrate your plant to the cloud | Learn about the cloud and cloud-hosted IoT services and how to connect your plant to one of these instead of a public MQTT broker | Migrate your plant to the cloud |
09 | Farm | Migrate your application logic to the cloud | Learn about how you can write application logic in the cloud that responds to IoT messages | Migrate your application logic to the cloud |
10 | Farm | Keep your plant secure | Learn about security with IoT and how to keep your plant secure with keys and certificates | Keep your plant secure |
11 | Transport | Location tracking | Learn about GPS location tracking for IoT devices | Location tracking |
12 | Transport | Store location data | Learn how to store IoT data to be visualized or analysed later | Store location data |
13 | Transport | Visualize location data | Learn about visualizing location data on a map, and how maps represent the real 3d world in 2 dimensions | Visualize location data |
14 | Transport | Geofences | Learn about geofences, and how they can be used to alert when vehicles in the supply chain are close to their destination | Geofences |
15 | Manufacturing | Train a fruit quality detector | Learn about training an image classifier in the cloud to detect fruit quality | Train a fruit quality detector |
16 | Manufacturing | Check fruit quality from an IoT device | Learn about using your fruit quality detector from an IoT device | Check fruit quality from an IoT device |
17 | Manufacturing | Run your fruit detector on the edge | Learn about running your fruit detector on an IoT device on the edge | Run your fruit detector on the edge |
18 | Manufacturing | Trigger fruit quality detection from a sensor | Learn about triggering fruit quality detection from a sensor | Trigger fruit quality detection from a sensor |
19 | Retail | Train a stock detector | Learn how to use object detection to train a stock detector to count stock in a shop | Train a stock detector |
20 | Retail | Check stock from an IoT device | Learn how to check stock from an IoT device using an object detection model | Check stock from an IoT device |
21 | Consumer | Recognize speech with an IoT device | Learn how to recognize speech from an IoT device to build a smart timer | Recognize speech with an IoT device |
22 | Consumer | Understand language | Learn how to understand sentences spoken to an IoT device | Understand language |
23 | Consumer | Set a timer and provide spoken feedback | Learn how to set a timer on an IoT device and give spoken feedback on when the timer is set and when it finishes | Set a timer and provide spoken feedback |
24 | Consumer | Support multiple languages | Learn how to support multiple languages, both being spoken to and the responses from your smart timer | Support multiple languages |
You can run this documentation offline by using Docsify. Fork this repo, install Docsify on your local machine, and then in the root folder of this repo, type docsify serve
. The website will be served on port 3000 on your localhost: localhost:3000
.
You can generate a PDF of this content for offline access if needed. To do
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号