Meilisearch is an open-source search engine. Discover what Meilisearch is!
Add your Strapi content-types into a Meilisearch instance. The plugin listens to modifications made on your content-types and updates Meilisearch accordingly.
To understand Meilisearch and how it works, see the Meilisearch's documentation.
To understand Strapi and how to create an app, see Strapi's documentation.
Say goodbye to server deployment and manual updates with Meilisearch Cloud. Get started with a 14-day free trial! No credit card required.
This package version works with the v4 of Strapi. If you are using Strapi v3, please refer to this README.
Inside your Strapi app, add the package:
With npm
:
npm install strapi-plugin-meilisearch
With yarn
:
yarn add strapi-plugin-meilisearch
To apply the plugin to Strapi, a re-build is needed:
strapi build
You will need both a running Strapi app and a running Meilisearch instance. For specific version compatibility see this section.
There are many easy ways to download and run a Meilisearch instance.
For example, if you use Docker:
docker pull getmeili/meilisearch:latest # Fetch the latest version of Meilisearch image from Docker Hub docker run -it --rm -p 7700:7700 getmeili/meilisearch:latest meilisearch --master-key=masterKey
If you don't have a running Strapi project yet, you can either launch the playground present in this project or create a Strapi project.
We recommend indexing your content-types to Meilisearch in development mode to allow the server reloads needed to apply or remove listeners.
strapi develop // or yarn develop
To run Meilisearch and Strapi on the same server you can use Docker. A Docker configuration example can be found in the directory resources/docker
of this repository.
To run the Docker script add both files Dockerfile
and docker-compose.yaml
at the root of your Strapi project and run it with the following command: docker-compose up
.
Now that you have installed the plugin, a running Meilisearch instance and, a running Strapi app, let's go to the plugin page on your admin dashboard.
On the left-navbar, Meilisearch
appears under the PLUGINS
category. If it does not, ensure that you have installed the plugin and re-build Strapi (see installation).
First, you need to configure credentials via the Strapi config, or on the plugin page. The credentials are composed of:
host
: The url to your running Meilisearch instance.api_key
: The master
or private
key as the plugin requires administration permission on Meilisearch.More about permissions here.⚠️ The master
or private
key should never be used to search
on your front end. For searching, use the public
key available on the key
route.
You can add your Meilisearch credentials in the settings
tab on the Meilisearch plugin page.
For example, using the credentials from the section above: Run Meilisearch
, the following screen shows where the information should be.
Once completed, click on the add
button.
To use the Strapi config add the following to config/plugins.js
:
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { // Your meili host host: "http://localhost:7700", // Your master key or private key apiKey: "masterKey", } } })
Note that if you use both methods, the config file overwrites the credentials added through the plugin page.
If you don't have any content-types yet in your Strapi Plugin, please follow Strapi quickstart.
We will use, as example, the content-types provided by Strapi's quickstart (plus the user content-type).
On your plugin homepage, you should have two content-types appearing: restaurant
, category
and user
.
By clicking on the left checkbox, the content-type is automatically indexed in Meilisearch. For example, if you click on the restaurant
checkbox, the indexing to Meilisearch starts.
Once the indexing is done, your restaurants are in Meilisearch. We will see in start searching how to try it out.
Hooks are listeners that update Meilisearch each time you add/update/delete an entry in your content-types.
They are activated as soon as you add a content-type to Meilisearch. For example by clicking on the checkbox of restaurant
.
Nonetheless, if you remove a content-type from Meilisearch by unchecking the checkbox, you need to reload the server. If you don't, actions are still listened to and applied to Meilisearch.
The reload is only possible in develop mode; click on the Reload Server
button. If not, reload the server manually!
It is possible to add settings for every collection. Start by creating a sub-object with the name of the collection inside your plugins.js
file.
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { restaurant: {} } } })
Settings:
By default, when indexing a content-type in Meilisearch, the index in Meilisearch has the same name as the content-type. This behavior can be changed by setting the indexName
property in the configuration file of the plugin.
To link a single collection to multiple indexes, you can assign an array of index names to the indexName
property.
Example 1: Linking a Single Collection to a Single Index
In the following examples, the restaurant
content-type in Meilisearch is called my_restaurant
instead of the default restaurant
.
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { restaurant: { indexName: "my_restaurants", } } } })
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { restaurant: { indexName: ["my_restaurants"], } } } })
It is possible to bind multiple content-types to the same index. They all have to share the same indexName
.
For example if shoes
and shirts
should be bound to the same index, they must have the same indexName
in the plugin configuration:
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { shirts: { indexName: ['products'], }, shoes: { indexName: ['products'], }, }, }, })
Now, on each entry addition from both shoes
and shirts
the entry is added in the product
index of Meilisearch.
Example 2: Linking a Single Collection to Multiple Indexes
Suppose you want the restaurant
content-type to be indexed under both my_restaurants
and all_food_places
indexes in Meilisearch. You can achieve this by setting the indexName
property to an array containing both index names, as shown in the configuration below:
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { restaurant: { indexName: ['my_restaurants', 'all_food_places'], } } } })
disclaimer
Nonetheless, it is not possible to know how many entries from each content-type is added to Meilisearch.
For example, given two content-types:
Shoes
: with 300 entries and an indexName
set to product
Shirts
: 200 entries and an indexName
set to product
The index product
has both the entries of shoes and shirts. If the index product
has 350
documents in Meilisearch, it is not possible to know how many of them are from shoes
or shirts
.
When removing shoes
or shirts
from Meilisearch, both are removed as it would require to much processing to only remove one. You can still re-index only one after that.
Examples can be found this directory.
By default, the plugin sent the data the way it is stored in your Strapi content-type. It is possible to remove or transform fields before sending your entries to Meilisearch.
Create the alteration function transformEntry
in the plugin's configuration file. Before sending the data to Meilisearch, every entry passes through this function where the alteration is applied.
transformEntry
can be synchronous
or asynchronous
.
You can find a lot of examples in this directory.
Example
For example, the restaurant
content-type has a relation with the category
content-type. Inside a restaurant
entry the categories
field contains an array of each category in an object
format: [{ name: "Brunch" ...}, { name: "Italian ... }]
.
The following transforms categories
in an array of strings containing only the name of the category:
// config/plugins.js module.exports = { meilisearch: { config: { restaurant: { transformEntry({ entry }) { // can also be async return { ...entry, categories: entry.categories.map(category => category.name) } }, } } }, }
Result:
{ "id": 2, "name": "Squared Pizza", "categories": [ "Brunch", "Italian" ], // other fields }
By transforming the categories
into an array of names, it is now compatible with the filtering
feature in Meilisearch.
Important: You should always return the id of the entry without any transformation to allow sync when unpublished or deleting some entries in Strapi.
You might want to filter out some entries. This is possible with the filterEntry
. Imagine you don't like Alfredo's
restaurant. You can filter out this specific entry.
filterEntry
can be synchronous
or asynchronous
.
// config/plugins.js module.exports = { meilisearch: { config: { restaurant: { filterEntry({ entry }) { // can also be async return entry.title !== `Alfredo` }, }, }, }, }
Alfredo's
restaurant is not added to Meilisearch.
Each index in Meilisearch can be customized with specific settings. It is possible to add your Meilisearch settings configuration to the indexes you create using the settings
field in the plugin configuration file.
The settings are added when either: adding a content-type to Meilisearch or when updating a content-type in Meilisearch. The settings are not updated when documents are added through the listeners
.
For example
module.exports = { meilisearch: { config: { restaurant: { settings: { filterableAttributes: ['categories'], synonyms: { healthy: ['pokeball', 'vegan'] } } } }
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不 同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号