Meilisearch is an open-source search engine. Discover what Meilisearch is!
Add your Strapi content-types into a Meilisearch instance. The plugin listens to modifications made on your content-types and updates Meilisearch accordingly.
To understand Meilisearch and how it works, see the Meilisearch's documentation.
To understand Strapi and how to create an app, see Strapi's documentation.
Say goodbye to server deployment and manual updates with Meilisearch Cloud. Get started with a 14-day free trial! No credit card required.
This package version works with the v4 of Strapi. If you are using Strapi v3, please refer to this README.
Inside your Strapi app, add the package:
With npm:
npm install strapi-plugin-meilisearch
With yarn:
yarn add strapi-plugin-meilisearch
To apply the plugin to Strapi, a re-build is needed:
strapi build
You will need both a running Strapi app and a running Meilisearch instance. For specific version compatibility see this section.
There are many easy ways to download and run a Meilisearch instance.
For example, if you use Docker:
docker pull getmeili/meilisearch:latest # Fetch the latest version of Meilisearch image from Docker Hub docker run -it --rm -p 7700:7700 getmeili/meilisearch:latest meilisearch --master-key=masterKey
If you don't have a running Strapi project yet, you can either launch the playground present in this project or create a Strapi project.
We recommend indexing your content-types to Meilisearch in development mode to allow the server reloads needed to apply or remove listeners.
strapi develop // or yarn develop
To run Meilisearch and Strapi on the same server you can use Docker. A Docker configuration example can be found in the directory resources/docker of this repository.
To run the Docker script add both files Dockerfile and docker-compose.yaml at the root of your Strapi project and run it with the following command: docker-compose up.
Now that you have installed the plugin, a running Meilisearch instance and, a running Strapi app, let's go to the plugin page on your admin dashboard.
On the left-navbar, Meilisearch appears under the PLUGINS category. If it does not, ensure that you have installed the plugin and re-build Strapi (see installation).
First, you need to configure credentials via the Strapi config, or on the plugin page. The credentials are composed of:
host: The url to your running Meilisearch instance.api_key: The master or private key as the plugin requires administration permission on Meilisearch.More about permissions here.⚠️ The master or private key should never be used to search on your front end. For searching, use the public key available on the key route.
You can add your Meilisearch credentials in the settings tab on the Meilisearch plugin page.
For example, using the credentials from the section above: Run Meilisearch, the following screen shows where the information should be.
Once completed, click on the add button.
To use the Strapi config add the following to config/plugins.js:
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { // Your meili host host: "http://localhost:7700", // Your master key or private key apiKey: "masterKey", } } })
Note that if you use both methods, the config file overwrites the credentials added through the plugin page.
If you don't have any content-types yet in your Strapi Plugin, please follow Strapi quickstart.
We will use, as example, the content-types provided by Strapi's quickstart (plus the user content-type).
On your plugin homepage, you should have two content-types appearing: restaurant, category and user.
By clicking on the left checkbox, the content-type is automatically indexed in Meilisearch. For example, if you click on the restaurant checkbox, the indexing to Meilisearch starts.
Once the indexing is done, your restaurants are in Meilisearch. We will see in start searching how to try it out.
Hooks are listeners that update Meilisearch each time you add/update/delete an entry in your content-types.
They are activated as soon as you add a content-type to Meilisearch. For example by clicking on the checkbox of restaurant.
Nonetheless, if you remove a content-type from Meilisearch by unchecking the checkbox, you need to reload the server. If you don't, actions are still listened to and applied to Meilisearch.
The reload is only possible in develop mode; click on the Reload Server button. If not, reload the server manually!
It is possible to add settings for every collection. Start by creating a sub-object with the name of the collection inside your plugins.js file.
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { restaurant: {} } } })
Settings:
By default, when indexing a content-type in Meilisearch, the index in Meilisearch has the same name as the content-type. This behavior can be changed by setting the indexName property in the configuration file of the plugin.
To link a single collection to multiple indexes, you can assign an array of index names to the indexName property.
Example 1: Linking a Single Collection to a Single Index
In the following examples, the restaurant content-type in Meilisearch is called my_restaurant instead of the default restaurant.
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { restaurant: { indexName: "my_restaurants", } } } })
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { restaurant: { indexName: ["my_restaurants"], } } } })
It is possible to bind multiple content-types to the same index. They all have to share the same indexName.
For example if shoes and shirts should be bound to the same index, they must have the same indexName in the plugin configuration:
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { shirts: { indexName: ['products'], }, shoes: { indexName: ['products'], }, }, }, })
Now, on each entry addition from both shoes and shirts the entry is added in the product index of Meilisearch.
Example 2: Linking a Single Collection to Multiple Indexes
Suppose you want the restaurant content-type to be indexed under both my_restaurants and all_food_places indexes in Meilisearch. You can achieve this by setting the indexName property to an array containing both index names, as shown in the configuration below:
// config/plugins.js module.exports = () => ({ //... meilisearch: { config: { restaurant: { indexName: ['my_restaurants', 'all_food_places'], } } } })
disclaimer
Nonetheless, it is not possible to know how many entries from each content-type is added to Meilisearch.
For example, given two content-types:
Shoes: with 300 entries and an indexName set to productShirts: 200 entries and an indexName set to productThe index product has both the entries of shoes and shirts. If the index product has 350 documents in Meilisearch, it is not possible to know how many of them are from shoes or shirts.
When removing shoes or shirts from Meilisearch, both are removed as it would require to much processing to only remove one. You can still re-index only one after that.
Examples can be found this directory.
By default, the plugin sent the data the way it is stored in your Strapi content-type. It is possible to remove or transform fields before sending your entries to Meilisearch.
Create the alteration function transformEntry in the plugin's configuration file. Before sending the data to Meilisearch, every entry passes through this function where the alteration is applied.
transformEntry can be synchronous or asynchronous.
You can find a lot of examples in this directory.
Example
For example, the restaurant content-type has a relation with the category content-type. Inside a restaurant entry the categories field contains an array of each category in an object format: [{ name: "Brunch" ...}, { name: "Italian ... }].
The following transforms categories in an array of strings containing only the name of the category:
// config/plugins.js module.exports = { meilisearch: { config: { restaurant: { transformEntry({ entry }) { // can also be async return { ...entry, categories: entry.categories.map(category => category.name) } }, } } }, }
Result:
{ "id": 2, "name": "Squared Pizza", "categories": [ "Brunch", "Italian" ], // other fields }
By transforming the categories into an array of names, it is now compatible with the filtering feature in Meilisearch.
Important: You should always return the id of the entry without any transformation to allow sync when unpublished or deleting some entries in Strapi.
You might want to filter out some entries. This is possible with the filterEntry. Imagine you don't like Alfredo's restaurant. You can filter out this specific entry.
filterEntry can be synchronous or asynchronous.
// config/plugins.js module.exports = { meilisearch: { config: { restaurant: { filterEntry({ entry }) { // can also be async return entry.title !== `Alfredo` }, }, }, }, }
Alfredo's restaurant is not added to Meilisearch.
Each index in Meilisearch can be customized with specific settings. It is possible to add your Meilisearch settings configuration to the indexes you create using the settings field in the plugin configuration file.
The settings are added when either: adding a content-type to Meilisearch or when updating a content-type in Meilisearch. The settings are not updated when documents are added through the listeners.
For example
module.exports = { meilisearch: { config: { restaurant: { settings: { filterableAttributes: ['categories'], synonyms: { healthy: ['pokeball', 'vegan'] } } } }


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号