扩散模型在机器人学研究中的最新进展与应用
本项目整理了扩散模型在机器人学领域的前沿研究文献和代码资源,涵盖模仿学习、视频生成等多个研究方向。资源库提供扩散模型入门教程、精选论文摘要和主题分类的机器人扩散论文集,为研究者提供全面参考。项目旨在帮助研究人员了解并应用机器人扩散技术的最新进展。
"Creating noise from data is easy; creating data from noise is generative modeling."
Yang Song in "Score-Based Generative Modeling through Stochastic Differential Equations" Song et al., 2020
This repository offers a brief summary of essential papers and blogs on diffusion models, alongside a categorized collection of robotics diffusion papers and useful code repositories for starting your own diffusion robotics project.
2.1 Imitation Learning and Policy Learning
2.2 Video Diffusion in Robotics
2.3 Online RL
2.4 Offline RL
2.5 Inverse RL
2.6 World Models
<a name="Learning-about-Diffusion-models"></a> While there exist many tutorials for Diffusion models, below you can find an overview of some of the best introduction blog posts and video:
What are Diffusion Models?: an introduction video, which introduces the general idea of diffusion models and some high-level math about how the model works
Diffusion Models | Paper Explanation | Math Explained another great video tutorial explaining the math and notation of diffusion models in detail with visual aid
Generative Modeling by Estimating Gradients of the Data Distribution: blog post from the one of the most influential authors in this area, which introduces diffusion models from the score-based perspective
What are Diffusion Models: a in-depth blog post about the theory of diffusion models with a general summary on how diffusion model improved over time
Understanding Diffusion Models: an in-depth explanation paper, which explains the diffusion models from both perspectives with detailed derivations
If you don't like reading blog posts and prefer the original papers, below you can find a list with the most important diffusion theory papers:
Sohl-Dickstein, Jascha, et al. "Deep unsupervised learning using nonequilibrium thermodynamics." International Conference on Machine Learning. PMLR, 2015.
Ho, Jonathan, et al. "Denoising diffusion probabilistic models." Advances in Neural Information Processing Systems 33 (2020): 6840-6851.
Song, Yang, et al. "Score-Based Generative Modeling through Stochastic Differential Equations." International Conference on Learning Representations. 2020.
Ho, Jonathan, and Tim Salimans. "Classifier-Free Diffusion Guidance." NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications. 2021.
Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." Advances in Neural Information Processing Systems 35 (2022)
A general list with all published diffusion papers can be found here: Whats the score?
<a name="Diffusion-in-Robotics"></a> Since the modern diffusion models have been around for only 3 years, the literature about diffusion models in the context of robotics is still small, but growing rapidly. Below you can find most robotics diffusion papers, which have been published at conferences or uploaded to Arxiv so far:
<a name="Imitation-Learning-and-Policy-Learning"></a>
Zhou, Hongyi, et al. "Variational Distillation of Diffusion Policies into Mixture of Experts." arXiv preprint arXiv:2406.12538 (2024).
Jia, Xiaogang, et al. "MaIL: Improving Imitation Learning with Mamba." arXiv preprint arXiv:2406.08234 (2024).
Hao, Ce, et al. "Language-Guided Manipulation with Diffusion Policies and Constrained Inpainting." arXiv preprint arXiv:2406.09767 (2024).
Shridhar, Mohit, Yat Long Lo, and Stephen James. "Generative Image as Action Models." arXiv preprint arXiv:2407.07875 (2024).
Høeg, Sigmund H., and Lars Tingelstad. "TEDi Policy: Temporally Entangled Diffusion for Robotic Control." arXiv preprint arXiv:2406.04806 (2024).
Vosylius, Vitalis, et al. "Render and Diffuse: Aligning Image and Action Spaces for Diffusion-based Behaviour Cloning." Proceedings of Robotics: Science and Systems (RSS) 2024.
Prasad, Aaditya, et al. "Consistency Policy: Accelerated Visuomotor Policies via Consistency Distillation." Proceedings of Robotics: Science and Systems (RSS) 2024.
Bharadhwaj, Homanga, et al. "Track2Act: Predicting Point Tracks from Internet Videos enables Diverse Zero-shot Robot Manipulation." ECCV 2024
Reuss, Moritz, et al. "Multimodal Diffusion Transformer: Learning Versatile Behavior from Multimodal Goals." Proceedings of Robotics: Science and Systems (RSS) 2024.
Gupta, Gunshi, et al. "Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control." First Workshop on Vision-Language Models for Navigation and Manipulation at ICRA 2024 (2024).
Ke, Tsung-Wei, Nikolaos Gkanatsios, and Katerina Fragkiadaki. "3D Diffuser Actor: Policy Diffusion with 3D Scene Representations." arXiv preprint arXiv:2402.10885 (2024).
Ze, Yanjie, et al. "3D Diffusion Policy." Proceedings of Robotics: Science and Systems (RSS) 2024.
Ma, Xiao, et al. "Hierarchical Diffusion Policy for Kinematics-Aware Multi-Task Robotic Manipulation." arXiv preprint arXiv:2403.03890 (2024).
Yan, Ge, Yueh-Hua Wu, and Xiaolong Wang. "DNAct: Diffusion Guided Multi-Task 3D Policy Learning." arXiv preprint arXiv:2403.04115 (2024).
Zhang, Xiaoyu, et al. "Diffusion Meets DAgger: Supercharging Eye-in-hand Imitation Learning." arXiv preprint arXiv:2402.17768 (2024).
Chen, Kaiqi, et al. "Behavioral Refinement via Interpolant-based Policy Diffusion." arXiv preprint arXiv:2402.16075 (2024).
Wang, Bingzheng, et al. "DiffAIL: Diffusion Adversarial Imitation Learning." arXiv preprint arXiv:2312.06348 (2023).
Scheikl, Paul Maria, et al. "Movement Primitive Diffusion: Learning Gentle Robotic Manipulation of Deformable Objects." arXiv preprint arXiv:2312.10008 (2023).
Octo Model Team et al. Octo: An Open-Source Generalist Robot Policy
Black, Kevin, et al. "ZERO-SHOT ROBOTIC MANIPULATION WITH PRETRAINED IMAGE-EDITING DIFFUSION MODELS." arXiv preprint arXiv:2310.10639 (2023).
Reuss, Moritz, and Rudolf Lioutikov. "Multimodal Diffusion Transformer for Learning from Play." 2nd Workshop on Language and Robot Learning: Language as Grounding. 2023.
Sridhar, Ajay, et al. "NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration." arXiv preprint arXiv:2310.07896 (2023).
Zhou, Xian, et al. "Unifying Diffusion Models with Action Detection Transformers for Multi-task Robotic Manipulation." Conference on Robot Learning. PMLR, 2023.
Ze, Yanjie, et al. "Multi-task real robot learning with generalizable neural feature fields." 7th Annual Conference on Robot Learning. 2023.
Mishra, Utkarsh Aashu, et al. "Generative Skill Chaining: Long-Horizon Skill Planning with Diffusion Models." Conference on Robot Learning. PMLR, 2023.
Chen, Lili, et al. "PlayFusion: Skill Acquisition via Diffusion from Language-Annotated Play." Conference on Robot Learning. PMLR, 2023.
Ha, Huy, Pete Florence, and Shuran Song. "Scaling Up and Distilling Down: Language-Guided Robot Skill Acquisition." Conference on Robot Learning. PMLR, 2023.
Xu, Mengda, et al. "XSkill: Cross Embodiment Skill Discovery." Conference on Robot Learning. PMLR, 2023.
Li, Xiang, et al. "Crossway Diffusion: Improving Diffusion-based Visuomotor Policy via Self-supervised Learning." arXiv preprint arXiv:2307.01849 (2023).
Ng, Eley, Ziang Liu, and Monroe Kennedy III. "Diffusion Co-Policy for Synergistic Human-Robot Collaborative Tasks." arXiv preprint arXiv:2305.12171 (2023).
Chi, Cheng, et al. "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion." Proceedings of Robotics: Science and Systems (RSS) 2023.
Reuss, Moritz, et al. "Goal-Conditioned Imitation Learning using Score-based Diffusion Policies." Proceedings of Robotics: Science and Systems (RSS) 2023.
Yoneda, Takuma, et al. "To the Noise and Back: Diffusion for Shared Autonomy." Proceedings of Robotics: Science and Systems (RSS) 2023.
Jiang, Chiyu, et al. "MotionDiffuser: Controllable Multi-Agent Motion Prediction Using Diffusion." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
Kapelyukh, Ivan, et al. "DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics." IEEE Robotics and Automation Letters (RA-L) 2023.
Pearce, Tim, et al. "Imitating human behaviour with diffusion models." " International Conference on Learning Representations. 2023.
Yu, Tianhe, et al. "Scaling robot learning with semantically imagined experience." arXiv preprint arXiv:2302.11550 (2023).
<a name="Video-Diffusion"></a>
The ability of Diffusion models to generate realistic videos over a long horizon has enabled new applications in the context of robotics.
Wang, Boyang, et al. "This&That: Language-Gesture Controlled Video Generation for Robot Planning." arXiv:2407.05530 (2024).
Chen, Boyuan, et al. "Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion." arXiv preprint arXiv:2407.01392 (2024).
Zhou, Siyuan, et al. "RoboDreamer: Learning Compositional World Models for Robot Imagination." arXiv preprint arXiv:2404.12377 (2024).
McCarthy, Robert, et al. "Towards Generalist Robot Learning from Internet Video: A Survey." arXiv preprint arXiv:2404.19664 (2024).
He, Haoran, et al. "Large-Scale Actionless Video Pre-Training via Discrete Diffusion for Efficient Policy Learning." arXiv preprint arXiv:2402.14407 (2024).
Liang, Zhixuan, et al. "SkillDiffuser: Interpretable Hierarchical Planning via Skill Abstractions in Diffusion-Based Task Execution." arXiv preprint arXiv:2312.11598 (2023).
Huang, Tao, et al. "Diffusion Reward: Learning Rewards via Conditional Video Diffusion." arXiv preprint arXiv:2312.14134 (2023).
Du, Yilun, et al. "Video Language Planning." arXiv preprint arXiv:2310.10625 (2023).
Yang, Mengjiao, et al. "Learning Interactive Real-World Simulators." arXiv preprint arXiv:2310.06114 (2023).
Ko, Po-Chen, et al. "Learning to Act from Actionless Videos through Dense Correspondences." arXiv preprint arXiv:2310.08576 (2023).
Ajay, Anurag, et al. "Compositional Foundation Models for Hierarchical Planning." Advances in Neural Information Processing Systems 37 (2023)
Dai, Yilun, et al. "Learning Universal Policies via Text-Guided Video Generation." Advances in Neural Information Processing Systems 37 (2023)
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体 的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号