扩散模型在机器人学研究中的最新进展与应用
本项目整理了扩散模型在机器人学领域的前沿研究文献和代码资源,涵盖模仿学习、视频生成等多个研究方向。资源库提供扩散模型入门教程、精选论文摘要和主题分类的机器人扩散论文集,为研究者提供全面参考。项目旨在帮助研究人员了解并应用机器人扩散技术的最新进展。
"Creating noise from data is easy; creating data from noise is generative modeling."
Yang Song in "Score-Based Generative Modeling through Stochastic Differential Equations" Song et al., 2020
This repository offers a brief summary of essential papers and blogs on diffusion models, alongside a categorized collection of robotics diffusion papers and useful code repositories for starting your own diffusion robotics project.
2.1 Imitation Learning and Policy Learning
2.2 Video Diffusion in Robotics
2.3 Online RL
2.4 Offline RL
2.5 Inverse RL
2.6 World Models
<a name="Learning-about-Diffusion-models"></a> While there exist many tutorials for Diffusion models, below you can find an overview of some of the best introduction blog posts and video:
What are Diffusion Models?: an introduction video, which introduces the general idea of diffusion models and some high-level math about how the model works
Diffusion Models | Paper Explanation | Math Explained another great video tutorial explaining the math and notation of diffusion models in detail with visual aid
Generative Modeling by Estimating Gradients of the Data Distribution: blog post from the one of the most influential authors in this area, which introduces diffusion models from the score-based perspective
What are Diffusion Models: a in-depth blog post about the theory of diffusion models with a general summary on how diffusion model improved over time
Understanding Diffusion Models: an in-depth explanation paper, which explains the diffusion models from both perspectives with detailed derivations
If you don't like reading blog posts and prefer the original papers, below you can find a list with the most important diffusion theory papers:
Sohl-Dickstein, Jascha, et al. "Deep unsupervised learning using nonequilibrium thermodynamics." International Conference on Machine Learning. PMLR, 2015.
Ho, Jonathan, et al. "Denoising diffusion probabilistic models." Advances in Neural Information Processing Systems 33 (2020): 6840-6851.
Song, Yang, et al. "Score-Based Generative Modeling through Stochastic Differential Equations." International Conference on Learning Representations. 2020.
Ho, Jonathan, and Tim Salimans. "Classifier-Free Diffusion Guidance." NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications. 2021.
Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." Advances in Neural Information Processing Systems 35 (2022)
A general list with all published diffusion papers can be found here: Whats the score?
<a name="Diffusion-in-Robotics"></a> Since the modern diffusion models have been around for only 3 years, the literature about diffusion models in the context of robotics is still small, but growing rapidly. Below you can find most robotics diffusion papers, which have been published at conferences or uploaded to Arxiv so far:
<a name="Imitation-Learning-and-Policy-Learning"></a>
Zhou, Hongyi, et al. "Variational Distillation of Diffusion Policies into Mixture of Experts." arXiv preprint arXiv:2406.12538 (2024).
Jia, Xiaogang, et al. "MaIL: Improving Imitation Learning with Mamba." arXiv preprint arXiv:2406.08234 (2024).
Hao, Ce, et al. "Language-Guided Manipulation with Diffusion Policies and Constrained Inpainting." arXiv preprint arXiv:2406.09767 (2024).
Shridhar, Mohit, Yat Long Lo, and Stephen James. "Generative Image as Action Models." arXiv preprint arXiv:2407.07875 (2024).
Høeg, Sigmund H., and Lars Tingelstad. "TEDi Policy: Temporally Entangled Diffusion for Robotic Control." arXiv preprint arXiv:2406.04806 (2024).
Vosylius, Vitalis, et al. "Render and Diffuse: Aligning Image and Action Spaces for Diffusion-based Behaviour Cloning." Proceedings of Robotics: Science and Systems (RSS) 2024.
Prasad, Aaditya, et al. "Consistency Policy: Accelerated Visuomotor Policies via Consistency Distillation." Proceedings of Robotics: Science and Systems (RSS) 2024.
Bharadhwaj, Homanga, et al. "Track2Act: Predicting Point Tracks from Internet Videos enables Diverse Zero-shot Robot Manipulation." ECCV 2024
Reuss, Moritz, et al. "Multimodal Diffusion Transformer: Learning Versatile Behavior from Multimodal Goals." Proceedings of Robotics: Science and Systems (RSS) 2024.
Gupta, Gunshi, et al. "Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control." First Workshop on Vision-Language Models for Navigation and Manipulation at ICRA 2024 (2024).
Ke, Tsung-Wei, Nikolaos Gkanatsios, and Katerina Fragkiadaki. "3D Diffuser Actor: Policy Diffusion with 3D Scene Representations." arXiv preprint arXiv:2402.10885 (2024).
Ze, Yanjie, et al. "3D Diffusion Policy." Proceedings of Robotics: Science and Systems (RSS) 2024.
Ma, Xiao, et al. "Hierarchical Diffusion Policy for Kinematics-Aware Multi-Task Robotic Manipulation." arXiv preprint arXiv:2403.03890 (2024).
Yan, Ge, Yueh-Hua Wu, and Xiaolong Wang. "DNAct: Diffusion Guided Multi-Task 3D Policy Learning." arXiv preprint arXiv:2403.04115 (2024).
Zhang, Xiaoyu, et al. "Diffusion Meets DAgger: Supercharging Eye-in-hand Imitation Learning." arXiv preprint arXiv:2402.17768 (2024).
Chen, Kaiqi, et al. "Behavioral Refinement via Interpolant-based Policy Diffusion." arXiv preprint arXiv:2402.16075 (2024).
Wang, Bingzheng, et al. "DiffAIL: Diffusion Adversarial Imitation Learning." arXiv preprint arXiv:2312.06348 (2023).
Scheikl, Paul Maria, et al. "Movement Primitive Diffusion: Learning Gentle Robotic Manipulation of Deformable Objects." arXiv preprint arXiv:2312.10008 (2023).
Octo Model Team et al. Octo: An Open-Source Generalist Robot Policy
Black, Kevin, et al. "ZERO-SHOT ROBOTIC MANIPULATION WITH PRETRAINED IMAGE-EDITING DIFFUSION MODELS." arXiv preprint arXiv:2310.10639 (2023).
Reuss, Moritz, and Rudolf Lioutikov. "Multimodal Diffusion Transformer for Learning from Play." 2nd Workshop on Language and Robot Learning: Language as Grounding. 2023.
Sridhar, Ajay, et al. "NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration." arXiv preprint arXiv:2310.07896 (2023).
Zhou, Xian, et al. "Unifying Diffusion Models with Action Detection Transformers for Multi-task Robotic Manipulation." Conference on Robot Learning. PMLR, 2023.
Ze, Yanjie, et al. "Multi-task real robot learning with generalizable neural feature fields." 7th Annual Conference on Robot Learning. 2023.
Mishra, Utkarsh Aashu, et al. "Generative Skill Chaining: Long-Horizon Skill Planning with Diffusion Models." Conference on Robot Learning. PMLR, 2023.
Chen, Lili, et al. "PlayFusion: Skill Acquisition via Diffusion from Language-Annotated Play." Conference on Robot Learning. PMLR, 2023.
Ha, Huy, Pete Florence, and Shuran Song. "Scaling Up and Distilling Down: Language-Guided Robot Skill Acquisition." Conference on Robot Learning. PMLR, 2023.
Xu, Mengda, et al. "XSkill: Cross Embodiment Skill Discovery." Conference on Robot Learning. PMLR, 2023.
Li, Xiang, et al. "Crossway Diffusion: Improving Diffusion-based Visuomotor Policy via Self-supervised Learning." arXiv preprint arXiv:2307.01849 (2023).
Ng, Eley, Ziang Liu, and Monroe Kennedy III. "Diffusion Co-Policy for Synergistic Human-Robot Collaborative Tasks." arXiv preprint arXiv:2305.12171 (2023).
Chi, Cheng, et al. "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion." Proceedings of Robotics: Science and Systems (RSS) 2023.
Reuss, Moritz, et al. "Goal-Conditioned Imitation Learning using Score-based Diffusion Policies." Proceedings of Robotics: Science and Systems (RSS) 2023.
Yoneda, Takuma, et al. "To the Noise and Back: Diffusion for Shared Autonomy." Proceedings of Robotics: Science and Systems (RSS) 2023.
Jiang, Chiyu, et al. "MotionDiffuser: Controllable Multi-Agent Motion Prediction Using Diffusion." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
Kapelyukh, Ivan, et al. "DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics." IEEE Robotics and Automation Letters (RA-L) 2023.
Pearce, Tim, et al. "Imitating human behaviour with diffusion models." " International Conference on Learning Representations. 2023.
Yu, Tianhe, et al. "Scaling robot learning with semantically imagined experience." arXiv preprint arXiv:2302.11550 (2023).
<a name="Video-Diffusion"></a>
The ability of Diffusion models to generate realistic videos over a long horizon has enabled new applications in the context of robotics.
Wang, Boyang, et al. "This&That: Language-Gesture Controlled Video Generation for Robot Planning." arXiv:2407.05530 (2024).
Chen, Boyuan, et al. "Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion." arXiv preprint arXiv:2407.01392 (2024).
Zhou, Siyuan, et al. "RoboDreamer: Learning Compositional World Models for Robot Imagination." arXiv preprint arXiv:2404.12377 (2024).
McCarthy, Robert, et al. "Towards Generalist Robot Learning from Internet Video: A Survey." arXiv preprint arXiv:2404.19664 (2024).
He, Haoran, et al. "Large-Scale Actionless Video Pre-Training via Discrete Diffusion for Efficient Policy Learning." arXiv preprint arXiv:2402.14407 (2024).
Liang, Zhixuan, et al. "SkillDiffuser: Interpretable Hierarchical Planning via Skill Abstractions in Diffusion-Based Task Execution." arXiv preprint arXiv:2312.11598 (2023).
Huang, Tao, et al. "Diffusion Reward: Learning Rewards via Conditional Video Diffusion." arXiv preprint arXiv:2312.14134 (2023).
Du, Yilun, et al. "Video Language Planning." arXiv preprint arXiv:2310.10625 (2023).
Yang, Mengjiao, et al. "Learning Interactive Real-World Simulators." arXiv preprint arXiv:2310.06114 (2023).
Ko, Po-Chen, et al. "Learning to Act from Actionless Videos through Dense Correspondences." arXiv preprint arXiv:2310.08576 (2023).
Ajay, Anurag, et al. "Compositional Foundation Models for Hierarchical Planning." Advances in Neural Information Processing Systems 37 (2023)
Dai, Yilun, et al. "Learning Universal Policies via Text-Guided Video Generation." Advances in Neural Information Processing Systems 37 (2023)
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号