
扩散模型在机器人学研究中的最新进展与应用
本项目整理了扩散模型在机器人学领域的前沿研究文献和代码资源,涵盖模仿学习、视频生成等多个研究方向。资源库提供扩散模型入门教程、精选论文摘要和主题分类的机器人扩散论文集,为研究者提供全面参考。项目旨在帮助研究人员了解并应用机器人扩散技术的最新进展。
"Creating noise from data is easy; creating data from noise is generative modeling."
Yang Song in "Score-Based Generative Modeling through Stochastic Differential Equations" Song et al., 2020
This repository offers a brief summary of essential papers and blogs on diffusion models, alongside a categorized collection of robotics diffusion papers and useful code repositories for starting your own diffusion robotics project.
2.1 Imitation Learning and Policy Learning
2.2 Video Diffusion in Robotics
2.3 Online RL
2.4 Offline RL
2.5 Inverse RL
2.6 World Models
<a name="Learning-about-Diffusion-models"></a> While there exist many tutorials for Diffusion models, below you can find an overview of some of the best introduction blog posts and video:
What are Diffusion Models?: an introduction video, which introduces the general idea of diffusion models and some high-level math about how the model works
Diffusion Models | Paper Explanation | Math Explained another great video tutorial explaining the math and notation of diffusion models in detail with visual aid
Generative Modeling by Estimating Gradients of the Data Distribution: blog post from the one of the most influential authors in this area, which introduces diffusion models from the score-based perspective
What are Diffusion Models: a in-depth blog post about the theory of diffusion models with a general summary on how diffusion model improved over time
Understanding Diffusion Models: an in-depth explanation paper, which explains the diffusion models from both perspectives with detailed derivations
If you don't like reading blog posts and prefer the original papers, below you can find a list with the most important diffusion theory papers:
Sohl-Dickstein, Jascha, et al. "Deep unsupervised learning using nonequilibrium thermodynamics." International Conference on Machine Learning. PMLR, 2015.
Ho, Jonathan, et al. "Denoising diffusion probabilistic models." Advances in Neural Information Processing Systems 33 (2020): 6840-6851.
Song, Yang, et al. "Score-Based Generative Modeling through Stochastic Differential Equations." International Conference on Learning Representations. 2020.
Ho, Jonathan, and Tim Salimans. "Classifier-Free Diffusion Guidance." NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications. 2021.
Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." Advances in Neural Information Processing Systems 35 (2022)
A general list with all published diffusion papers can be found here: Whats the score?
<a name="Diffusion-in-Robotics"></a> Since the modern diffusion models have been around for only 3 years, the literature about diffusion models in the context of robotics is still small, but growing rapidly. Below you can find most robotics diffusion papers, which have been published at conferences or uploaded to Arxiv so far:
<a name="Imitation-Learning-and-Policy-Learning"></a>
Zhou, Hongyi, et al. "Variational Distillation of Diffusion Policies into Mixture of Experts." arXiv preprint arXiv:2406.12538 (2024).
Jia, Xiaogang, et al. "MaIL: Improving Imitation Learning with Mamba." arXiv preprint arXiv:2406.08234 (2024).
Hao, Ce, et al. "Language-Guided Manipulation with Diffusion Policies and Constrained Inpainting." arXiv preprint arXiv:2406.09767 (2024).
Shridhar, Mohit, Yat Long Lo, and Stephen James. "Generative Image as Action Models." arXiv preprint arXiv:2407.07875 (2024).
Høeg, Sigmund H., and Lars Tingelstad. "TEDi Policy: Temporally Entangled Diffusion for Robotic Control." arXiv preprint arXiv:2406.04806 (2024).
Vosylius, Vitalis, et al. "Render and Diffuse: Aligning Image and Action Spaces for Diffusion-based Behaviour Cloning." Proceedings of Robotics: Science and Systems (RSS) 2024.
Prasad, Aaditya, et al. "Consistency Policy: Accelerated Visuomotor Policies via Consistency Distillation." Proceedings of Robotics: Science and Systems (RSS) 2024.
Bharadhwaj, Homanga, et al. "Track2Act: Predicting Point Tracks from Internet Videos enables Diverse Zero-shot Robot Manipulation." ECCV 2024
Reuss, Moritz, et al. "Multimodal Diffusion Transformer: Learning Versatile Behavior from Multimodal Goals." Proceedings of Robotics: Science and Systems (RSS) 2024.
Gupta, Gunshi, et al. "Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control." First Workshop on Vision-Language Models for Navigation and Manipulation at ICRA 2024 (2024).
Ke, Tsung-Wei, Nikolaos Gkanatsios, and Katerina Fragkiadaki. "3D Diffuser Actor: Policy Diffusion with 3D Scene Representations." arXiv preprint arXiv:2402.10885 (2024).
Ze, Yanjie, et al. "3D Diffusion Policy." Proceedings of Robotics: Science and Systems (RSS) 2024.
Ma, Xiao, et al. "Hierarchical Diffusion Policy for Kinematics-Aware Multi-Task Robotic Manipulation." arXiv preprint arXiv:2403.03890 (2024).
Yan, Ge, Yueh-Hua Wu, and Xiaolong Wang. "DNAct: Diffusion Guided Multi-Task 3D Policy Learning." arXiv preprint arXiv:2403.04115 (2024).
Zhang, Xiaoyu, et al. "Diffusion Meets DAgger: Supercharging Eye-in-hand Imitation Learning." arXiv preprint arXiv:2402.17768 (2024).
Chen, Kaiqi, et al. "Behavioral Refinement via Interpolant-based Policy Diffusion." arXiv preprint arXiv:2402.16075 (2024).
Wang, Bingzheng, et al. "DiffAIL: Diffusion Adversarial Imitation Learning." arXiv preprint arXiv:2312.06348 (2023).
Scheikl, Paul Maria, et al. "Movement Primitive Diffusion: Learning Gentle Robotic Manipulation of Deformable Objects." arXiv preprint arXiv:2312.10008 (2023).
Octo Model Team et al. Octo: An Open-Source Generalist Robot Policy
Black, Kevin, et al. "ZERO-SHOT ROBOTIC MANIPULATION WITH PRETRAINED IMAGE-EDITING DIFFUSION MODELS." arXiv preprint arXiv:2310.10639 (2023).
Reuss, Moritz, and Rudolf Lioutikov. "Multimodal Diffusion Transformer for Learning from Play." 2nd Workshop on Language and Robot Learning: Language as Grounding. 2023.
Sridhar, Ajay, et al. "NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration." arXiv preprint arXiv:2310.07896 (2023).
Zhou, Xian, et al. "Unifying Diffusion Models with Action Detection Transformers for Multi-task Robotic Manipulation." Conference on Robot Learning. PMLR, 2023.
Ze, Yanjie, et al. "Multi-task real robot learning with generalizable neural feature fields." 7th Annual Conference on Robot Learning. 2023.
Mishra, Utkarsh Aashu, et al. "Generative Skill Chaining: Long-Horizon Skill Planning with Diffusion Models." Conference on Robot Learning. PMLR, 2023.
Chen, Lili, et al. "PlayFusion: Skill Acquisition via Diffusion from Language-Annotated Play." Conference on Robot Learning. PMLR, 2023.
Ha, Huy, Pete Florence, and Shuran Song. "Scaling Up and Distilling Down: Language-Guided Robot Skill Acquisition." Conference on Robot Learning. PMLR, 2023.
Xu, Mengda, et al. "XSkill: Cross Embodiment Skill Discovery." Conference on Robot Learning. PMLR, 2023.
Li, Xiang, et al. "Crossway Diffusion: Improving Diffusion-based Visuomotor Policy via Self-supervised Learning." arXiv preprint arXiv:2307.01849 (2023).
Ng, Eley, Ziang Liu, and Monroe Kennedy III. "Diffusion Co-Policy for Synergistic Human-Robot Collaborative Tasks." arXiv preprint arXiv:2305.12171 (2023).
Chi, Cheng, et al. "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion." Proceedings of Robotics: Science and Systems (RSS) 2023.
Reuss, Moritz, et al. "Goal-Conditioned Imitation Learning using Score-based Diffusion Policies." Proceedings of Robotics: Science and Systems (RSS) 2023.
Yoneda, Takuma, et al. "To the Noise and Back: Diffusion for Shared Autonomy." Proceedings of Robotics: Science and Systems (RSS) 2023.
Jiang, Chiyu, et al. "MotionDiffuser: Controllable Multi-Agent Motion Prediction Using Diffusion." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
Kapelyukh, Ivan, et al. "DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics." IEEE Robotics and Automation Letters (RA-L) 2023.
Pearce, Tim, et al. "Imitating human behaviour with diffusion models." " International Conference on Learning Representations. 2023.
Yu, Tianhe, et al. "Scaling robot learning with semantically imagined experience." arXiv preprint arXiv:2302.11550 (2023).
<a name="Video-Diffusion"></a>
The ability of Diffusion models to generate realistic videos over a long horizon has enabled new applications in the context of robotics.
Wang, Boyang, et al. "This&That: Language-Gesture Controlled Video Generation for Robot Planning." arXiv:2407.05530 (2024).
Chen, Boyuan, et al. "Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion." arXiv preprint arXiv:2407.01392 (2024).
Zhou, Siyuan, et al. "RoboDreamer: Learning Compositional World Models for Robot Imagination." arXiv preprint arXiv:2404.12377 (2024).
McCarthy, Robert, et al. "Towards Generalist Robot Learning from Internet Video: A Survey." arXiv preprint arXiv:2404.19664 (2024).
He, Haoran, et al. "Large-Scale Actionless Video Pre-Training via Discrete Diffusion for Efficient Policy Learning." arXiv preprint arXiv:2402.14407 (2024).
Liang, Zhixuan, et al. "SkillDiffuser: Interpretable Hierarchical Planning via Skill Abstractions in Diffusion-Based Task Execution." arXiv preprint arXiv:2312.11598 (2023).
Huang, Tao, et al. "Diffusion Reward: Learning Rewards via Conditional Video Diffusion." arXiv preprint arXiv:2312.14134 (2023).
Du, Yilun, et al. "Video Language Planning." arXiv preprint arXiv:2310.10625 (2023).
Yang, Mengjiao, et al. "Learning Interactive Real-World Simulators." arXiv preprint arXiv:2310.06114 (2023).
Ko, Po-Chen, et al. "Learning to Act from Actionless Videos through Dense Correspondences." arXiv preprint arXiv:2310.08576 (2023).
Ajay, Anurag, et al. "Compositional Foundation Models for Hierarchical Planning." Advances in Neural Information Processing Systems 37 (2023)
Dai, Yilun, et al. "Learning Universal Policies via Text-Guided Video Generation." Advances in Neural Information Processing Systems 37 (2023)


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号