mazeppa

mazeppa

现代超级编译器 函数式程序优化工具

Mazeppa是一款现代超级编译器,专为优化函数式程序而设计。它通过分析执行模式来提升程序效率,支持全面的基本数据类型,并允许手动控制函数展开。Mazeppa的决策过程完全透明,能够实现去森林化、部分求值等多种优化,甚至具备一定的定理证明能力。该编译器为call-by-value函数式语言提供了强大的优化支持,是一个高效的程序转换工具。

超级编译程序转换Mazeppa函数式编程优化Github开源项目

Mazeppa

CI

Supercompilation [^turchin-concept] is a program transformation technique that symbolically evaluates a given program, with run-time values as unknowns. In doing so, it discovers execution patterns of the original program and synthesizes them into standalone functions; the result of supercompilation is a more efficient residual program. In terms of transformational power, supercompilation subsumes both deforestation [^deforestation] and partial evaluation [^partial-evaluation], and even exhibits certain capabilities of theorem proving.

Mazeppa is a modern supercompiler intended to be a compilation target for call-by-value functional languages. Having prior supercompilers diligently compared and revised, Mazeppa

  1. Provides the full set of primitive data types for efficient computation.
  2. Supports manual control of function unfolding.
  3. Is fully transparent in terms of what decisions it takes during transformation.
  4. Is designed with efficiency in mind from the very beginning.

Installation

First, install the OCaml system on your machine:

$ bash -c "sh <(curl -fsSL https://raw.githubusercontent.com/ocaml/opam/master/shell/install.sh)"
$ opam init --auto-setup

Then clone the repository and install Mazeppa:

$ git clone https://github.com/mazeppa-dev/mazeppa.git
$ cd mazeppa
$ ./scripts/install.sh

Type mazeppa --help to confirm the installation.

<details> <summary>Building with Flambda</summary>

Flambda is a powerful program inliner and specializer for OCaml. If you build Mazeppa with an Flambda-enabled OCaml compiler, you may see much better performance. To set it up:

$ opam switch create 5.2.0+flambda ocaml-variants.5.2.0+options ocaml-option-flambda
$ eval $(opam env --switch=5.2.0+flambda)

(You may use a different version instead of 5.2.0 if you wish.)

To check if Flambda was successfully enabled, run:

$ ocamlopt -config | grep flambda
</details>

Hacking

You can play with Mazeppa without actually installing it. Having OCaml installed and the repository cloned (as above), run the following command from the root directory:

$ ./scripts/play.sh

(Graphviz is required: sudo apt install graphviz.)

This will launch Mazeppa with --inspect on playground/main.mz and visualize the process graph in target/graph.svg. The latter can be viewed in VS Code by the Svg Preview extension.

./scripts/play.sh will automatically recompile the sources in OCaml, if anything is changed.

Supercompilation by example

The best way to understand how supercompilation works is by example. Consider the following function that takes a list and computes a sum of its squared elements:

[examples/sum-squares/main.mz]

main(xs) := sum(mapSq(xs));

sum(xs) := match xs {
    Nil() -> 0i32,
    Cons(x, xs) -> +(x, sum(xs))
};

mapSq(xs) := match xs {
    Nil() -> Nil(),
    Cons(x, xs) -> Cons(*(x, x), mapSq(xs))
};

This program is written in the idiomatic, listful functional style. Every function does only one thing, and does it well. However, there is a serious problem here: mapSq essentially constructs a list that will be immediately deconstructed by sum, meaning that we 1) we need to allocate extra memory for the intermediate list, and 2) we need two passes of computation instead of one. The solution to this problem is called deforestation [^deforestation], which is a special case of supercompilation.

Let us see what Mazeppa does with this program:

$ mkdir sum-squares
$ cd sum-squares
# Copy-paste the program above.
$ nano main.mz
$ mazeppa run --inspect

The --inspect flag tells Mazeppa to give a detailed report on the transformation process. The sum-squares/target/ directory will contain the following files:

target
├── graph.dot
├── nodes.json
├── output.mz
└── program.json
  • graph.dot contains the complete process graph for our program. You can obtain a picture of the graph by running dot -Tsvg target/graph.dot > target/graph.svg.
  • nodes.json contains the contents of all nodes in the graph. Without this file, you would not be able to understand much from the graph alone.
  • program.json contains the initial program in Mazeppa IR: our supercompiler works with this particular representation instead of the original program.
  • output.mz contains the final residual program.

output.mz will contain the following code:

[examples/sum-squares/target/output.mz]

main(xs) := f0(xs);

f0(x0) := match x0 {
    Cons(x1, x2) -> +(*(x1, x1), f0(x2)),
    Nil() -> 0i32
};

The supercompiler has successfully merged sum and mapSq into a single function, f0! Unlike the original program, f0 works in a single pass, without having to allocate any extra memory.

How did the supercompiler got to this point? Let us see the generated process graph:

<div align="center"> <img src="media/sum-squares.svg" width="500px" /> </div>

For reference, nodes.json contains the following data in JSON:

[ [ "n0", "main(xs)" ], [ "n1", "sum(mapSq(xs))" ], [ "n2", "sum(.g1(xs))" ], [ "n3", "xs" ], [ "n4", "sum(Cons(*(.v0, .v0), mapSq(.v1)))" ], [ "n5", ".g0(Cons(*(.v0, .v0), mapSq(.v1)))" ], [ "n6", "+(*(.v0, .v0), sum(mapSq(.v1)))" ], [ "n7", "+(*(.v0, .v0), sum(.g1(.v1)))" ], [ "n8", "*(.v0, .v0)" ], [ "n9", ".v0" ], [ "n10", ".v0" ], [ "n11", "sum(.g1(.v1))" ], [ "n12", ".v1" ], [ "n13", "+(.v3, .v4)" ], [ "n14", ".v3" ], [ "n15", ".v4" ], [ "n16", "sum(Nil())" ], [ "n17", ".g0(Nil())" ], [ "n18", "0i32" ] ]

(We will not need to inspect program.json for this tiny example, but feel free to look at it: it is not too complicated.)

The supercompiler starts with node n0 containing main(xs). After two steps of function unfolding, we reach node n2 containing sum(.g1(xs)), where .g1 is the IR function that corresponds to our mapSq. At this point, we have no other choice than to analyze the call .g1(xs) by conjecturing what values xs might take at run-time. Since our mapSq only accepts the constructors Nil and Cons, it is sufficient to consider the cases xs=Cons(.v0, .v1) and xs=Nil() only.

Node n4 is what happens after we substitute Cons(.v0, .v1) for xs, where .v0 and .v1 are fresh variables. After three more function unfoldings, we arrive at n7. This is the first time we have to split the call +(*(.v0, .v0), sum(.g1(.v1))) into .v3=*(.v0, .v0) (n8) and .v4=sum(.g1(.v1)) (n11) and proceed supercompiling +(.v3, .v4) (n13); the reason for doing so is that a previous node (n2) is structurally embedded in n7, so supercompilation might otherwise continue forever. Now, what happens with sum(.g1(.v1)) (n11)? We have seen it earlier! Recall that n2 contains sum(.g1(xs)), which is just a renaming of sum(.g1(.v1)); so we decide to fold n11 into n2, because it makes no sense to supercompile the same thing twice. The other branches of n7, namely n13 and n8, are decomposed, meaning that we simply proceed transforming their arguments.

As for the other branch of n2, sum(Nil()) (n16), it is enough to merely unfold this call to 0i32 (n18).

After the process graph is completed, residualization converts it to a final program. During this stage, dynamic execution patterns become functions -- node n2 now becomes the function f0, inasmuch as some other node (n11) points to it. In any residual program, there will be exactly as many functions as there are nodes with incoming dashed lines, plus main.

In summary, supercompilation consists of 1) unfolding function definitions, 2) analyzing calls that pattern-match an unknown variable, 3) breaking down computation into smaller parts, 4) folding repeated computations, and 5) decomposing calls that cannot be unfolded, such as +(.v3, .v4) (n13) in our example. The whole supercompilation process is guaranteed to terminate, because when some computation is becoming dangerously bigger and bigger, we break it down into subproblems and solve them in isolation.

There are a plenty of other interesting examples of deforestation in the examples/ folder, including tree-like data structures. In fact, we have reimplemented all samples from the previous work on higher-order call-by-value supercompilation by Peter A. Jonsson and Johan Nordlander [^CbV-supercomp] [^CbV-supercomp-next]; in all cases, Mazeppa has performed similarly or better.

Specializing the power function

Now consider another example, this time involving partial evaluation:

[examples/power-sq/main.mz]

main(a) := powerSq(a, 7u8);

powerSq(a, x) := match =(x, 0u8) {
    T() -> 1i32,
    F() -> match =(%(x, 2u8), 0u8) {
        T() -> square(powerSq(a, /(x, 2u8))),
        F() -> *(a, powerSq(a, -(x, 1u8)))
    }
};

square(a) := *(a, a);

powerSq implements the famous exponentiation-by-squaring algorithm. The original program is inefficient: it recursively examines the x parameter of powerSq, although it is perfectly known at compile-time. Running Mazeppa on main(a) will yield the following residual program:

[examples/power-sq/target/output.mz]

main(a) := *(a, let x0 := *(a, *(a, a)); *(x0, x0));

The whole powerSq function has been eliminated, thus achieving the effect of partial evaluation. (If we consider powerSq to be an interpreter for a program x and input data a, then it is the first Futamura projection: specializing an interpreter to obtain an efficient target program.) Also, notice how the supercompiler has managed to share the argument *(a, *(a, a)) twice, so that it is not recomputed each time anew. The residual program indeed reflects exponentiation by squaring.

Synthesizing the KMP algorithm

Let us go beyond deforestation and partial evaluation. Consider a function matches(p, s) of two strings, which returns T() if s contains p and F() otherwise. The naive implementation in Mazeppa would be the following, where p is specialized to "aab":

[examples/kmp-test/main.mz]

main(s) := matches(Cons('a', Cons('a', Cons('b', Nil()))), s);

matches(p, s) := go(p, s, p, s);

go(pp, ss, op, os) := match pp {
    Nil() -> T(),
    Cons(p, pp) -> goFirst(p, pp, ss, op, os)
};

goFirst(p, pp, ss, op, os) := match ss {
    Nil() -> F(),
    Cons(s, ss) -> match =(p, s) {
        T() -> go(pp, ss, op, os),
        F() -> failover(op, os)
    }
};

failover(op, os) := match os {
    Nil() -> F(),
    Cons(_s, ss) -> matches(op, ss)
};

(Here we represent strings as lists of characters for simplicity, but do not worry, Mazeppa provides built-in strings as well.)

The algorithm is correct but inefficient. Consider what happens when "aa" is successfully matched, but 'b' is not. The algorithm will start matching "aab" once again from the second character of s, although it can already be said that the second character of s is 'a'. The deterministic finite automaton built by the Knuth-Morris-Pratt algorithm (KMP) [^kmp] is an alternative way to solve this problem.

By running Mazeppa on the above sample, we can obtain an efficient string matching algorithm for p="aab" that reflects KMP in action:

[examples/kmp-test/target/output.mz]

main(s) := f0(s);

f0(x0) := match x0 {
    Cons(x1, x2) -> match =(97u8, x1) {
        F() -> f1(x2),
        T() -> f2(x2)
    },
    Nil() -> F()
};

f1(x0) := f0(x0);

f2(x0) := match x0 {
    Cons(x1, x2) -> match =(97u8, x1) {
        F() -> f1(x2),
        T() -> f4(x2)
    },
    Nil() -> F()
};

f3(x0) := f2(x0);

f4(x0) := match x0 {
    Cons(x1, x2) -> match =(98u8, x1) {
        F() -> match =(97u8, x1) {
            F() -> f1(x2),
            T() -> f4(x2)
        },
        T() -> T()
    },
    Nil() -> F()
};

The naive algorithm that we wrote has been automatically transformed into a well-known efficient version! While the naive algorithm has complexity O(|p| * |s|), the specialized one is O(|s|).

Synthesizing KMP is a standard example that showcases the power of supercompilation with respect to other techniques (e.g., see [^perfect-process-tree] and [^positive-supercomp]). Obtaining KMP by partial evaluation is not possible without changing the original definition of matches [^partial-evaluation-matches-1] [^partial-evaluation-matches-2].

Metasystem transition

Valentin Turchin, the inventor of supercompilation, describes the concept of metasystem transition in the following way [^turchin-mst-scp] [^turchin-transformation] [^turchin-dialogue]:

Consider a system S of any kind. Suppose that there is a way to make some number of copies from it, possibly with variations. Suppose that these systems are united into a new system S' which has the systems of the S type as its subsystems, and includes also an additional mechanism which controls the behavior and production of the S-subsystems. Then we call S' a metasystem with respect to S, and the creation of S' a metasystem transition. As a result of consecutive metasystem transitions a multilevel structure of control arises, which allows complicated forms of behavior.

Thus, supercompilation can be readily seen as a metasystem transition: there is an object program in Mazeppa, and there is the Mazeppa supercompiler which controls and supervises execution of the object program. However, we can go further and perform any number of metasystem transitions within the realm of the object program itself, as the next example demonstrates.

We will be using the code from examples/lambda-calculus/. Below is a standard

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多