mars

mars

多库支持的张量计算框架

Mars是一种基于张量的统一框架,支持大规模数据计算,兼容Numpy、Pandas、Scikit-learn等多个库。无论是单机还是集群环境,Mars都能简化数据处理工作。它提供了详细的安装指南、架构概览和多种使用模式,并与TensorFlow、PyTorch等库深度集成,显著提升计算效率。更多安装和使用信息,请参阅文档。

Mars数据计算分布式计算TensorDataFrameGithub开源项目

Mars 项目介绍

Mars 是一个基于张量的统一框架,专注于大规模数据计算。它扩展并支持了包括 Numpy、Pandas、Scikit-learn 在内的多个库的横向扩展能力。Mars 能够在数据处理的同时保持这些库熟悉的接口,提供了简单、强大且便于扩展的大数据处理解决方案。

安装说明

Mars 的安装过程非常简单。要安装 Mars,只需在终端中运行以下命令:

pip install pymars

开发者安装

如果您希望为 Mars 项目贡献代码,您可以通过以下步骤安装开发版本:

git clone https://github.com/mars-project/mars.git cd mars pip install -e ".[dev]"

详细的安装说明可以参阅 Mars 的官方文档。

架构概览

Mars 的架构设计支持在多核甚至分布式环境下高效运行,从而增强了运算的速度和计算能力。

入门指南

您可以通过以下方式在本地启动一个新的计算会话:

import mars mars.new_session()

或者,连接到已经初始化的 Mars 集群:

import mars mars.new_session('http://<web_ip>:<ui_port>')

Mars 张量

Mars 张量提供了类似于 Numpy 的接口。比较下列代码示例,左侧是 Numpy 的实现,右侧是 Mars 张量的实现:

import numpy as np import mars.tensor as mt N = 200_000_000 a = np.random.uniform(-1, 1, size=(N, 2)) print((np.linalg.norm(a, axis=1) < 1).sum() * 4 / N)

Mars 充分利用多核处理,即使在笔记本电脑上也能高效运行,并且在分布式设置下表现尤其出色。

Mars 数据帧

Mars 提供了类似于 Pandas 的数据帧接口。下列代码展示了 Pandas 和 Mars 数据帧的对比:

import numpy as np import pandas as pd import mars.tensor as mt import mars.dataframe as md df = pd.DataFrame(np.random.rand(100_000_000, 4), columns=list('abcd')) print(df.sum()) df = md.DataFrame(mt.random.rand(100_000_000, 4), columns=list('abcd')) print(df.sum().execute())

Mars 学习

Mars 学习部分提供了类似于 Scikit-learn 的接口,并且能够与许多机器学习框架集成,例如 TensorFlow、PyTorch、XGBoost、LightGBM 等。以下是与 Scikit-learn 的一个简单对比:

from sklearn.datasets import make_blobs from sklearn.decomposition import PCA X, y = make_blobs(n_samples=100_000_000, n_features=3, centers=[[3, 3, 3], [0, 0, 0], [1, 1, 1], [2, 2, 2]], cluster_std=[0.2, 0.1, 0.2, 0.2], random_state=9) pca = PCA(n_components=3) pca.fit(X) print(pca.explained_variance_ratio_) from mars.learn.datasets import make_blobs from mars.learn.decomposition import PCA X, y = make_blobs(n_samples=100_000_000, n_features=3, centers=[[3, 3, 3], [0, 0, 0], [1, 1, 1], [2, 2, 2]], cluster_std=[0.2, 0.1, 0.2, 0.2], random_state=9) pca = PCA(n_components=3) pca.fit(X) print(pca.explained_variance_ratio_)

Mars 远程

Mars 远程功能允许用户并行执行函数调用。相比传统的函数调用,它能够显著提高执行效率:

import numpy as np import mars.remote as mr def calc_chunk(n, i): rs = np.random.RandomState(i) a = rs.uniform(-1, 1, size=(n, 2)) return (np.linalg.norm(a, axis=1) < 1).sum() N = 200_000_000 n = 10_000_000 fs = [mr.spawn(calc_chunk, args=(n, i)) for i in range(N // n)] pi = mr.spawn(sum, args=(fs,)) print(pi.execute().fetch())

DASK on Mars

Mars 也支持在 DASK 框架上的集成,可以为在分布式数据分析场景中提供优秀的计算能力。

交互模式

Mars 支持交互模式,使其更加易于开发和调试。用户可以通过设置选项来启用交互模式:

from mars.config import options options.eager_mode = True

与 Ray 的集成

Mars 深度集成了 Ray,可以在 Ray 上高效运行,并与基于 Ray 的机器学习和分布式系统生态无缝交互。

灵活的扩展能力

Mars 可以在单机上运行,也可以扩展至具有数千台机器的集群,使得在不同规模的环境下都能保持优良的性能和数据处理能力。

裸机部署

在裸机集群中,Mars 可以通过启动不同组件来实现集群的扩展。用户可以选择某个节点作为管理节点,其它节点为工作节点,通过启动命令自定义节点角色。

Kubernetes 和 Yarn 部署

Mars 支持通过 Kubernetes 和 Yarn 进行部署,适用于云原生和大数据处理环境。

如何参与

  • 阅读开发指南,加入 Slack 工作群(Mars Computing)或邮件列表(发送邮件至 mars-dev@googlegroups.com)。
  • 感兴趣的开发者可以通过提交 GitHub issue 或 pull requests 来贡献代码。

感谢您的关注与贡献!

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多