Awesome-Hyperbolic-Representation-and-Deep-Learning

Awesome-Hyperbolic-Representation-and-Deep-Learning

双曲空间表示学习和深度学习研究资源集锦

本项目整理了双曲空间表示学习和深度学习领域的前沿研究成果。内容涵盖基础理论和实际应用,包括双曲浅层模型、双曲神经网络和双曲图神经网络等方法,以及在推荐系统、知识图谱等方面的应用。项目将相关论文进行分类整理,为研究人员提供便捷的学习资源,促进该领域的发展。

双曲空间图表示学习神经网络图神经网络深度学习Github开源项目

Awesome Stars Forks

Introduction

Recently, hyperbolic spaces have emerged as a promising alternative for processing data with a tree-like structure or power-law distribution, owing to its exponential growth property and tree-likeness prior. Different from the Euclidean space, which expands polynomially, the hyperbolic space grows exponentially which makes it gain natural advantages in abstracting tree-like or scale-free data with hierarchical organizations. In this repository, we categorize papers related to hyperbolic representation learning into different types to facilitate researcher studies and to promote the development of the community. We will keep updating this repository with the latest research developments. We are aware that there will inevitably be some mistakes and oversights, so if you have any questions or suggestions, please feel free to contact us (menglin.yang[@]outlook.com).

<table> <tr><td colspan="2"><a href="#latest-update", p style="color:#B22222">1. Lastest Update</a></td></tr> <tr><td colspan="2"><a href="#surveys-books-tools-tutorials", p style="color:#B22222">2. Surveys, Books, Tools and Tutorials</a></td></tr> <tr> <td>&ensp;<a href="#surveys">2.1 Surveys</a></td> <td>&ensp;<a href="#books">2.2 Books </a></td> </tr> <tr> <td>&ensp;<a href="#tools">2.3 Tools </a></td> <td>&ensp;<a href="#tutorials">2.4 Tutorials</a></td> </tr> <tr><td colspan="2"><a href="#methods-and-models", p style="color:#B22222">3. Methods and Models</a></td></tr> <tr> <td>&ensp;<a href="#hyperbolic-shallow-model">3.1 Hyperbolic Shallow Model</a></td> <td>&ensp;<a href="#hyperbolic-neural-network">3.2 Hyperbolic Neural Network</a></td> </tr> <tr> <td>&ensp;<a href="#hyperbolic-graph-neural-network">3.3 Hyperbolic Graph Neural Network</a></td> <td>&ensp;<a href="#mixed-curvature-learning">3.4 Mixed Curvature Learning</a></td> </tr> <tr> <td>&ensp;<a href="#ultrahyperbolic-learning">3.5 Ultrahyperbolic Learning</a></td> <td>&ensp;<a href="#hyperbolic-operations">3.6 Hyperbolic Operations</a></td> </tr> <tr> <td>&ensp;<a href="#hyperbolic-generation-models">3.7 Hyperbolic Generation Models</a></td> <td>&ensp;<a href="#llm-and-hyperbolic-space">3.8 LLM && Hyperbolic Space</a></td> </tr> <tr><td colspan="2"><a href="#applications", p style="color:#B22222">4. Applications</a></td></tr> <tr> <td>&ensp;<a href="#recommender-systems">4.1 Recommender Systems</a></td> <td>&ensp;<a href="#knowledge-graphs">4.2 Knowledge Graphs</a></td> </tr> <tr> <td>&ensp;<a href="#molecular-learning">4.3 Molecular Learning </a></td> <td>&ensp;<a href="#dynamic-graphs">4.4 Dynamic Graphs</a></td> </tr> <tr> <td>&ensp;<a href="#code-representation">4.5 Code Representation</a></td> <td>&ensp;<a href="#graph-embeddings">4.6 Graph Embedding</a></td> </tr> <tr> <td>&ensp;<a href="#word-embeddings">4.7 Word Embedding</a></td> <td>&ensp;<a href="#multi-label-learning">4.8 Multi-label Learning</a></td> </tr> <tr> <td>&ensp;<a href="#computer-vision">4.9 Computer Vision</a></td> <td>&ensp;<a href="#natural-language-processing">4.10 Natural Language Processing</a></td> </tr> </table>

Hyperbolic Slack Group

✨New❗️(July 4, 2024)

  1. Hypformer: Exploring Efficient Hyperbolic Transformer Fully in Hyperbolic Space, KDD 2024

  2. Hyperbolicity Measures “Democracy” in Real-World Networks, Phys. Rev. E 2015

  3. The Numerical Stability of Hyperbolic Representation Learning, ICML 2023

  4. Fully Hyperbolic Convolutional Neural Networks for Computer Vision, ICLR 2024

  5. The Dark Side of the Hyperbolic Moon, ICLR 2024

  6. Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design, ICLR 2024

  7. Fast Hyperboloid Decision Tree Algorithms, ICLR 2024

  8. Ultra-sparse network advantage in deep learning via Cannistraci-Hebb brain-inspired training with hyperbolic meta-deep community-layered epitopology, ICLR 2024

  9. Matrix Manifold Neural Networks++, ICLR 2024

  10. Hyperbolic VAE via Latent Gaussian Distributions, NeurIPS 2023
    Seunghyuk Cho, Juyong Lee, Dongwoo Kim

  11. Hyperbolic Space with Hierarchical Margin Boosts Fine-Grained Learning from Coarse Labels, NeurIPS, 2023
    Shu-Lin Xu, Yifan Sun, Faen Zhang, Anqi Xu, Xiu-Shen Wei, Yi Yang

  12. Hyperbolic Graph Neural Networks at Scale: A Meta Learning Approach, NeurIPS 2023
    Nurendra Choudhary, Nikhil Rao, Chandan K. Reddy

  13. Fitting trees to $\ell_1$-hyperbolic distances, NeurIPS 2023
    Joon-Hyeok Yim, Anna Gilbert

  14. Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design, arxiv 2023
    Heng Dong, Junyu Zhang, Chongjie Zhang

  15. Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive Learning, arxiv 2023
    Yifei Zhang, Hao Zhu, Jiahong Liu, Piotr Koniusz, Irwin King

  16. Riemannian Residual Neural Networks, arxiv 2023
    Isay Katsman, Eric Ming Chen, Sidhanth Holalkere, Anna Asch, Aaron Lou, Ser-Nam Lim, Christopher De Sa

  17. Tempered Calculus for ML: Application to Hyperbolic Model Embedding, arxiv 2024
    Richard Nock, Ehsan Amid, Frank Nielsen, Alexander Soen, Manfred K. Warmuth

Surveys, Books, Tools, Tutorials

Surveys

  1. Hyperbolic Deep Learning in Computer Vision: A Survey, arxiv 2023
    Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, Serena Yeung

  2. Hyperbolic Graph Neural Networks: A Review of Methods and Application, arxiv 2022. GitHub
    Menglin Yang, Min Zhou, Zhihao Li, Jiahong Liu, Lujia Pan, Hui Xiong, Irwin King

  3. Hyperbolic Deep Neural Networks: A Survey, TPAMI 2022. GitHub
    Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, Guoying Zhao

  4. Hyperbolic Geometry in Computer Vision: A Survey, arxiv 2023.
    Pengfei Fang, Mehrtash Harandi, Trung Le, Dinh Phung

Books

  1. An Introduction to Geometric Topology, 2022
    Bruno Martelli

  2. Hyperbolic Geometry, 2020.
    Brice Loustau

  3. Manifolds and Differential Geometry, 2009.
    Jeffrey M. Lee

  4. Introduction to Hyperbolic Geometry, 1995.
    A Ramsay, RD Richtmyer

Tools

  1. Geoopt: Riemannian Adaptive Optimization Methods ICLR 2019
    Max Kochurov and Rasul Karimov and Serge Kozlukov

  2. Curvature Learning Framework
    Alibaba

  3. GraphZoo: A Development Toolkit for Graph Neural Networks with Hyperbolic Geometries WWW 2022
    Anoushka Vyas, Nurendra Choudhary, Mehrdad Khatir, Chandan K. Reddy

  4. HypLL: The Hyperbolic Learning Library, GitHub
    Max van Spengler, Philipp Wirth, Pascal Mettes

Tutorials

  1. Hyperbolic Deep Learning for Computer Vision
    Pascal Mettes, Max van Spengler, Yunhui Guo, Stella Yu

  2. Hyperbolic networks: Theory, Architecture and Applications
    Nurendra Choudhary, Nikhil Rao, Karthik Subbian, Srinivasan H. Sengamedu, Chandan Reddy

  3. Hyperbolic Graph Neural Networks: A Tutorial on Methods and Applications, KDD 2023
    Min Zhou, Menglin Yang, Bo Xiong, Hui Xiong, Irwin King

  4. Hyperbolic Representation Learning for Computer Vision. Tutorial 2022
    Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, Serena Yeung@ECCV2022
    https://hyperbolic-representation-learning.readthedocs.io/en/latest/

  5. Hyperbolic Graph Representation Learning. Tutorial 2022
    Min Zhou, Menglin Yang, Lujia Pan, Irwin King @ ECML-PKDD 2022

  6. Hyperbolic Neural Network. Tutorial 2022
    Nurendra Choudhary, Nikhil Rao, Karthik Subbian, Srinivasan Sengamedu, Chandan Reddy @ KDD 2022

  7. Hyperbolic Hyperbolic embeddings in machine learning and deep learning. Tutorial 2020
    Octavian Ganea 2020.

Methods and Models

Hyperbolic Shallow Model

  1. Poincaré Embeddings for Learning Hierarchical Representations, NeurIPS 2017
    Maximilian Nickel, Douwe Kiela

  2. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry, ICML 2018
    Maximilian Nickel, Douwe Kiela

  3. Representation Tradeoffs for Hyperbolic Embeddings, ICML 2018
    Frederic Sala, Christopher De Sa, Albert Gu, Christopher Re´

  4. Hyperbolic Entailment Cones for Learning Hierarchical Embeddings, ICML 2018
    Octavian-Eugen Ganea, Gary Bécigneul, Thomas Hofmann

  5. Lorentzian Distance Learning for Hyperbolic Representations, ICML 2019
    Marc T. Law, Renjie Liao, Jake Snell, Richard S. Zemel

  6. Hyperbolic Disk Embeddings for Directed Acyclic Graphs, ICML 2019
    Ryota Suzuki, Ryusuke Takahama, Shun Onoda

Hyperbolic Neural Network

  1. Hyperbolic Neural Networks, NeurIPS 2018
    Octavian-Eugen Ganea, Gary Bécigneul, Thomas Hofmann

  2. Hyperbolic Attention Networks, ICLR 2019
    Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, Nando de Freitas

  3. Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders, NeurIPS 2019
    Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, Yee Whye Teh

  4. Hyperbolic Neural Network++, ICLR 2021
    Ryohei Shimizu, Yusuke Mukuta, Tatsuya Harada

  5. Fully Hyperbolic Neural Networks, ACL 2022
    Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, Jie Zhou

  6. Poincaré ResNet, arxiv 2023
    Max van Spengler, Erwin Berkhout, Pascal Mettes

  7. Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic NN Design, CVPR 2022
    Xiran Fan, Chun-Hao Yang, Baba C. Vemuri

  8. Hypformer: Exploring Efficient Hyperbolic Transformer Fully in Hyperbolic Space, KDD 2024
    Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, Rex Ying

Hyperbolic Graph Neural Network

  1. [Hyperbolic

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多