prettymaps

prettymaps

基于OpenStreetMap数据绘制美观地图的Python工具

prettymaps是一个简洁的Python库,用于绘制OpenStreetMap自定义地图。它基于osmnx、matplotlib等包开发,提供简单API来创建美观的地图可视化。用户可自定义样式、选择预设,并获取地理数据进行分析。支持绘制圆形、矩形边界或整个区域的地图。该库简化了从OpenStreetMap数据创建定制地图的过程,适用于各种地图可视化需求。

prettymapsOpenStreetMapPython库地图绘制数据可视化Github开源项目
# Install prettymaps using pip: #!pip install prettymaps

prettymaps

A minimal Python library to draw customized maps from OpenStreetMap created using the osmnx, matplotlib, shapely and vsketch packages.

This work is licensed under a GNU Affero General Public License v3.0 (you can make commercial use, distribute and modify this project, but must disclose the source code with the license and copyright notice)

Note about crediting and NFTs:

  • Please keep the printed message on the figures crediting my repository and OpenStreetMap (mandatory by their license).
  • I am personally against NFTs for their environmental impact, the fact that they're a giant money-laundering pyramid scheme and the structural incentives they create for theft in the open source and generative art communities.
  • I do not authorize in any way this project to be used for selling NFTs, although I cannot legally enforce it. Respect the creator.
  • The AeternaCivitas and geoartnft projects have used this work to sell NFTs and refused to credit it. See how they reacted after being exposed: AeternaCivitas, geoartnft.
  • I have closed my other generative art projects on Github and won't be sharing new ones as open source to protect me from the NFT community.

<a href='https://ko-fi.com/marceloprates_' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://cdn.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>

As seen on Hacker News:

prettymaps subreddit

Google Colaboratory Demo

Installation

To enable plotter mode:

pip install git+https://github.com/abey79/vsketch@1.0.0

Install locally:

Install prettymaps with:

pip install prettymaps

Install on Google Colaboratory:

Install prettymaps with:

!pip install -e "git+https://github.com/marceloprates/prettymaps#egg=prettymaps"

Then restart the runtime (Runtime -> Restart Runtime) before importing prettymaps

Tutorial

Plotting with prettymaps is very simple. Run:

prettymaps.plot(your_query)

your_query can be:

  1. An address (Example: "Porto Alegre"),
  2. Latitude / Longitude coordinates (Example: (-30.0324999, -51.2303767))
  3. A custom boundary in GeoDataFrame format
import prettymaps plot = prettymaps.plot('Stad van de Zon, Heerhugowaard, Netherlands')

png

You can also choose from different "presets" (parameter combinations saved in JSON files)

See below an example using the "minimal" preset

import prettymaps plot = prettymaps.plot( 'Stad van de Zon, Heerhugowaard, Netherlands', preset = 'minimal' )

png

Run

prettymaps.presets()

to list all available presets:

import prettymaps prettymaps.presets()
<div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>preset</th> <th>params</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>abraca-redencao</td> <td>{'layers': {'perimeter': {}, 'streets': {'widt...</td> </tr> <tr> <th>1</th> <td>barcelona</td> <td>{'layers': {'perimeter': {'circle': False}, 's...</td> </tr> <tr> <th>2</th> <td>barcelona-plotter</td> <td>{'layers': {'streets': {'width': {'primary': 5...</td> </tr> <tr> <th>3</th> <td>cb-bf-f</td> <td>{'layers': {'streets': {'width': {'trunk': 6, ...</td> </tr> <tr> <th>4</th> <td>default</td> <td>{'layers': {'perimeter': {}, 'streets': {'widt...</td> </tr> <tr> <th>5</th> <td>heerhugowaard</td> <td>{'layers': {'perimeter': {}, 'streets': {'widt...</td> </tr> <tr> <th>6</th> <td>macao</td> <td>{'layers': {'perimeter': {}, 'streets': {'cust...</td> </tr> <tr> <th>7</th> <td>minimal</td> <td>{'layers': {'perimeter': {}, 'streets': {'widt...</td> </tr> <tr> <th>8</th> <td>plotter</td> <td>{'layers': {'perimeter': {}, 'streets': {'widt...</td> </tr> <tr> <th>9</th> <td>tijuca</td> <td>{'layers': {'perimeter': {}, 'streets': {'widt...</td> </tr> </tbody> </table> </div>

To examine a specific preset, run:

import prettymaps prettymaps.preset('default')
Preset(params={'layers': {'perimeter': {}, 'streets': {'width': {'motorway': 5, 'trunk': 5, 'primary': 4.5, 'secondary': 4, 'tertiary': 3.5, 'cycleway': 3.5, 'residential': 3, 'service': 2, 'unclassified': 2, 'pedestrian': 2, 'footway': 1}}, 'building': {'tags': {'building': True, 'landuse': 'construction'}}, 'water': {'tags': {'natural': ['water', 'bay']}}, 'forest': {'tags': {'landuse': 'forest'}}, 'green': {'tags': {'landuse': ['grass', 'orchard'], 'natural': ['island', 'wood'], 'leisure': 'park'}}, 'beach': {'tags': {'natural': 'beach'}}, 'parking': {'tags': {'amenity': 'parking', 'highway': 'pedestrian', 'man_made': 'pier'}}}, 'style': {'perimeter': {'fill': False, 'lw': 0, 'zorder': 0}, 'background': {'fc': '#F2F4CB', 'zorder': -1}, 'green': {'fc': '#8BB174', 'ec': '#2F3737', 'hatch_c': '#A7C497', 'hatch': 'ooo...', 'lw': 1, 'zorder': 1}, 'forest': {'fc': '#64B96A', 'ec': '#2F3737', 'lw': 1, 'zorder': 2}, 'water': {'fc': '#a8e1e6', 'ec': '#2F3737', 'hatch_c': '#9bc3d4', 'hatch': 'ooo...', 'lw': 1, 'zorder': 3}, 'beach': {'fc': '#FCE19C', 'ec': '#2F3737', 'hatch_c': '#d4d196', 'hatch': 'ooo...', 'lw': 1, 'zorder': 3}, 'parking': {'fc': '#F2F4CB', 'ec': '#2F3737', 'lw': 1, 'zorder': 3}, 'streets': {'fc': '#2F3737', 'ec': '#475657', 'alpha': 1, 'lw': 0, 'zorder': 4}, 'building': {'palette': ['#433633', '#FF5E5B'], 'ec': '#2F3737', 'lw': 0.5, 'zorder': 5}}, 'circle': None, 'radius': 500})

Insted of using the default configuration you can customize several parameters. The most important are:

  • layers: A dictionary of OpenStreetMap layers to fetch.
    • Keys: layer names (arbitrary)
    • Values: dicts representing OpenStreetMap queries
  • style: Matplotlib style parameters
    • Keys: layer names (the same as before)
    • Values: dicts representing Matplotlib style parameters
plot = prettymaps.plot( # Your query. Example: "Porto Alegre" or (-30.0324999, -51.2303767) (GPS coords) your_query, # Dict of OpenStreetMap Layers to plot. Example: # {'building': {'tags': {'building': True}}, 'water': {'tags': {'natural': 'water'}}} # Check the /presets folder for more examples layers, # Dict of style parameters for matplotlib. Example: # {'building': {'palette': ['#f00','#0f0','#00f'], 'edge_color': '#333'}} style, # Preset to load. Options include: # ['default', 'minimal', 'macao', 'tijuca'] preset, # Save current parameters to a preset file. # Example: "my-preset" will save to "presets/my-preset.json" save_preset, # Whether to update loaded preset with additional provided parameters. Boolean update_preset, # Plot with circular boundary. Boolean circle, # Plot area radius. Float radius, # Dilate the boundary by this amount. Float dilate )

plot is a python dataclass containing:

@dataclass class Plot: # A dictionary of GeoDataFrames (one for each plot layer) geodataframes: Dict[str, gp.GeoDataFrame] # A matplotlib figure fig: matplotlib.figure.Figure # A matplotlib axis object ax: matplotlib.axes.Axes

Here's an example of running prettymaps.plot() with customized parameters:

import prettymaps plot = prettymaps.plot( 'Praça Ferreira do Amaral, Macau', circle = True, radius = 1100, layers = { "green": { "tags": { "landuse": "grass", "natural": ["island", "wood"], "leisure": "park" } }, "forest": { "tags": { "landuse": "forest" } }, "water": { "tags": { "natural": ["water", "bay"] } }, "parking": { "tags": { "amenity": "parking", "highway": "pedestrian", "man_made": "pier" } }, "streets": { "width": { "motorway": 5, "trunk": 5, "primary": 4.5, "secondary": 4, "tertiary": 3.5, "residential": 3, } }, "building": { "tags": {"building": True}, }, }, style = { "background": { "fc": "#F2F4CB", "ec": "#dadbc1", "hatch": "ooo...", }, "perimeter": { "fc": "#F2F4CB", "ec": "#dadbc1", "lw": 0, "hatch": "ooo...", }, "green": { "fc": "#D0F1BF", "ec": "#2F3737", "lw": 1, }, "forest": { "fc": "#64B96A", "ec": "#2F3737", "lw": 1, }, "water": { "fc": "#a1e3ff", "ec": "#2F3737", "hatch": "ooo...", "hatch_c": "#85c9e6", "lw": 1, }, "parking": { "fc": "#F2F4CB", "ec": "#2F3737", "lw": 1, }, "streets": { "fc": "#2F3737", "ec": "#475657", "alpha": 1, "lw": 0, }, "building": { "palette": [ "#FFC857", "#E9724C", "#C5283D" ], "ec": "#2F3737", "lw": 0.5, } } )

png

In order to plot an entire region and not just a rectangular or circular area, set

radius = False
import prettymaps plot = prettymaps.plot( 'Bom Fim, Porto Alegre, Brasil', radius = False, )

png

You can access layers's GeoDataFrames directly like this:

import prettymaps # Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames) plot = prettymaps.plot('Centro Histórico, Porto Alegre', show = False) plot.geodataframes['building']
<div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th></th> <th>addr:housenumber</th> <th>addr:street</th> <th>amenity</th> <th>operator</th> <th>website</th> <th>geometry</th> <th>addr:postcode</th> <th>name</th> <th>office</th> <th>opening_hours</th> <th>...</th> <th>contact:phone</th> <th>bus</th> <th>public_transport</th> <th>source:name</th> <th>government</th> <th>ways</th> <th>name:fr</th> <th>type</th> <th>building:part</th> <th>architect</th> </tr> <tr> <th>element_type</th> <th>osmid</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>node</th>

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多