采用硬件隔离的端对端加密通信系统
Tinfoil Chat (TFC) 是一款开源的端对端加密通信系统,采用硬件级数据单向传输防止远程密钥窃取。TFC通过Tor网络匿名传输数据,使用先进加密技术保护通信内容。系统采用三台计算机架构,将加密和解密过程隔离,并通过物理单向数据二极管连接,有效阻止黑客攻击和数据泄露,提供高度端点安全保障。
Tinfoil Chat (TFC) is a FOSS+FHD peer-to-peer messaging system that relies on high assurance hardware architecture to protect users from passive collection, MITM attacks and most importantly, remote key exfiltration. TFC is designed for people with one of the most complex threat models: organized crime groups and nation state hackers who bypass end-to-end encryption of traditional secure messaging apps by hacking the endpoint.
TFC uses XChaCha20-Poly1305 end-to-end encryption with deniable authentication to protect all messages and files sent to individual recipients and groups. The symmetric keys are either pre-shared, or exchanged using X448, the base-10 fingerprints of which are verified via an out-of-band channel. TFC provides per-message forward secrecy with BLAKE2b based hash ratchet. All persistent user data is encrypted locally using XChaCha20-Poly1305, the key of which is derived from password and salt using Argon2id, the parameters of which are automatically tuned according to best practices. Key generation of TFC relies on Linux kernel's getrandom(), a syscall for its ChaCha20 based CSPRNG.
TFC routes all communication exclusively through the Tor anonymity network. It uses the next generation (v3) Tor Onion Services to enable P2P communication that never exits the Tor network. This makes it hard for the users to accidentally deanonymize themselves. It also means that unlike (de)centralized messengers, there's no third party server with access to user metadata such as who is talking to whom, when, and how much. The network architecture means TFC runs exclusively on the user's devices. There are no ads or tracking, and it collects no data whatsoever about the user. All data is always encrypted with keys the user controls, and the databases never leave the user's device.
Using Onion Services also means no account registration is needed. During the first launch
TFC generates a random TFC account (an Onion Service address) for the user, e.g.
4sci35xrhp2d45gbm3qpta7ogfedonuw2mucmc36jxemucd7fmgzj3ad
. By knowing this TFC account,
anyone can send the user a contact request and talk to them without ever learning their
real life identity, IP-address, or geolocation. Protected geolocation makes physical
attacks very difficult because the attacker doesn't know where the device is located on
the planet. At the same time it makes the communication censorship resistant: Blocking TFC
requires blocking Tor categorically, nation-wide.
TFC also features a traffic masking mode that hides the type, quantity, and schedule of communication, even if the network facing device of the user is hacked. To provide even further metadata protection from hackers, the Internet-facing part of TFC can be run on Tails, a privacy and anonymity focused operating system that contains no personal files of the user (which makes it hard to deduce to whom the endpoint belongs to), and that provides additional layers of protection for their anonymity.
TFC is designed to be used in hardware configuration that provides strong endpoint security. This configuration uses three computers per endpoint: Encryption and decryption processes are separated from each other onto two isolated computers, the Source Computer, and the Destination Computer. These two devices are dedicated for TFC. This split TCB interacts with the network via the user's daily computer, called the Networked Computer.
In TFC data moves from the Source Computer to the Networked Computer, and from the Networked Computer to the Destination Computer, unidirectionally. The unidirectionality of data flow is enforced, as the data is passed from one device to another only through a free hardware design data diode, that is connected to the three computers using one USB-cable per device. The Source and Destination Computers are not connected to the Internet, or to any device other than the data diode.
Optical repeater inside the optocouplers of the data diode enforce direction of data transmission with the fundamental laws of physics. This protection is so strong, the certified implementations of data diodes are typically found in critical infrastructure protection and government networks where the classification level of data varies between systems. A data diode might e.g. allow access to a nuclear power plant's safety system readings, while at the same time preventing attackers from exploiting these critical systems. An alternative use case is to allow importing data from less secure systems to ones that contain classified documents that must be protected from exfiltration.
In TFC the hardware data diode ensures that neither of the TCB-halves can be accessed bidirectionally. Since the protection relies on physical limitations of the hardware's capabilities, no piece of malware, not even a zero-day exploit can bypass the security provided by the data diode.
With the hardware in place, all that's left for the users to do is launch the device specific TFC program on each computer.
In the illustration above, Alice enters messages and commands to Transmitter Program running on her Source Computer. The Transmitter Program encrypts and signs plaintext data and relays the ciphertexts from Source Computer to her Networked Computer through the data diode.
Relay Program on Alice's Networked Computer relays commands and copies of outgoing messages to her Destination Computer via the data diode. Receiver Program on Alice's Destination Computer authenticates, decrypts and processes the received message/command.
Alice's Relay Program shares messages and files to Bob over a Tor Onion Service. The web client of Bob's Relay Program fetches the ciphertext from Alice's Onion Service and forwards it to his Destination Computer through his data diode. Bob's Receiver Program then authenticates, decrypts and processes the received message/file.
When Bob responds, he will type his message to the Transmitter Program on his Source Computer, and after a mirrored process, Alice reads the message from the Receiver Program on her Destination Computer. All this happens seamlessly and automatically.
The architecture described above simultaneously utilizes both the classical and the alternative data diode models to enable bidirectional communication between two users, while at the same time providing hardware enforced endpoint security:
The Destination Computer uses the classical data diode model. This means it can receive data from the insecure Networked Computer, but is unable to send data back to the Networked Computer. The Receiver Program is designed to function under these constraints. However, even though the program authenticates and validates all incoming data, it is not ruled out malware couldn't still infiltrate the Destination Computer. In the event that would happen, the malware would be unable to exfiltrate sensitive keys or plaintexts back to the Networked Computer, as the data diode prevents all outbound traffic.
The Source Computer uses the alternative data diode model. This means it can output encrypted data to the insecure Networked Computer without having to worry about being compromised. The data diode lacks the hardware that would allow transmission of data to the Source Computer, which protects the Source Computer from all remote attacks. The Transmitter Program is also designed to work under the data flow constraints introduced by the data diode; To allow key exchanges, the short elliptic-curve public keys are input manually by the user.
The Networked Computer is designed under the assumption it can be compromised by a remote attacker: All sensitive data that passes through the Relay Program is protected by authenticated encryption with no exceptions. Since the attacker is unable to exfiltrate decryption keys from the Source or Destination Computer, the ciphertexts obtained from Networked Computer are of no value to the attacker.
For some users the APTs of the modern world are not part of the threat model, and for others, the requirement of having to build the data diode by themselves is a deal-breaker. Yet, for all of them, storing private keys on a networked device is still a security risk.
To meet these users' needs, TFC can also be run in three dedicated Qubes virtual machines. With the Qubes configuration, the isolation is provided by the Xen hypervisor, and the unidirectionality of data flow between the VMs is enforced with Qubes' qrexec framework. This intermediate isolation mechanism runs on a single computer which means no hardware data diode is needed.
Threat model<br> FAQ<br> Security design<br>
Hardware Data Diode<Br> Breadboard version (Easy)<br> Perfboard version (Intermediate)<br> PCB version (Advanced)<br>
How to use<br> Installation<br> Master password setup<br> Local key setup<br> Onion Service setup<br> X448 key exchange<br> Pre-shared keys<br> Commands<br>
[Update
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号