
多模态推理与思维链技术在科学问题回答中的创新应用
ScienceQA项目结合多模态推理和思维链技术,开发了一个包含图像和文本的大规模科学问题数据集。通过利用GPT等先进语言模型,该项目在科学问题回答任务中实现了高达96%的准确率。ScienceQA已被多家机构采用,并在多个顶级学术会议上展示,展现了其在科学教育和人工智能领域的应用潜力。
Data and code for NeurIPS 2022 Paper "Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering".
For more details, please refer to the project page with dataset exploration and visualization tools: https://scienceqa.github.io.
:bell: If you have any questions or suggestions, please don't hesitate to let us know. You can directly email Pan Lu at UCLA using the email address lupantech@gmail.com, comment on the Twitter, or post an issue on this repository.
[2023.12.29] 🚨 We have a major update featuring over 100 recent models! We appreciate your contributions and feedback. 🚀
[2023.05.04] ScienceQA Featured in Leaked Google Document: "We Have No Moat, And Neither Does OpenAI": A recent leak of an internal Google document highlights the advancements and impact of ScienceQA within the AI research community. 🎯
[2023.05.03] In April, our ScienceQA dataset was downloaded 1,421 times from HuggingFace Datasets, showcasing its growing popularity in the community. [Link] 🌟
[2023.04.19] Chameleon: Developed by UCLA and Microsoft, this innovative project achieves a new SOTA in the few-shot setting, reaching an impressive 86.54%. :star:
[2023.04.17] LLaVA: A collaborative effort by UW–Madison and Microsoft, this groundbreaking work sets a new SOTA at 92.53%. :star:
[2023.04.01] Our work is accepted by CVPR 2023 O-DRUM Workshop.
[2023.04.01] Our work is covered by Towards AI.
[2023.04.01] Our ScienceQA dataset was downloaded 377 times in March at HuggingFace Datasets.
[2023.03.30] The ScienceQA dataset is now included at OpenDataLab.
[2023.03.28] The ScienceQA dataset has served as the primary benchmark for LLaMA-Adapter, developed by Shanghai AI Laboratory, UCLA, and CUHK. :star:
[2023.02.13] Our work gives an oral presentation by Pan Lu at AAAI 2023 KnowledgeNLP Workshop.
[2023.02.05] Our work is covered by MarkTechPost.
[2023.02.24] The ScienceQA dataset is now included at HuggingFace Datasets. :star:
[2023.02.02] The ScienceQA dataset has served as the primary benchmark for the new generation of multimodal reasoning systems, Multimodal-CoT, developed by Amazon Science.
[2022.11.29] Our work gives an poster presentation by Pan Lu at NeurIPS 2022.
[2022.11.20] Our work is covered by Geek Culture | Medium.
[2022.11] Our work is now included at Paper with Code.
[2022.09.22] Our work is accepted to NeurIPS 2022. 🌟
[2022.09.20] Our work is featured in Deep AI.
Evaluation of different methods on the test split (whole: 4,241, mini: 1,000 examples). The accuracies across various categories and the overall average are reported below.
😀 You are invited to contribute your results to the TabMWP test split! Please send your result scores to this email or open a new issue at the github repository.
⚠️⚠️⚠️ Caveat: The data in the leaderboard is collected manually from existing papers. There might be some errors in the data, ambiguous data due to different interpretations, and missing data due to the lack of information in the papers. Make sure to double-check the data before using it. Please contact us at this email if you find any errors or have any suggestions. We appreciate your contributions and feedback.
The interactive leaderboard is available at https://scienceqa.github.io/leaderboard.html.
| # | Model | Method | Learning | #Size | #P | Link | Date | NAT | SOC | LAN | TXT | IMG | NO | G1-6 | G7-12 | Avg |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| * | Human Performance | - | - | - | - | Link | 22-09-20 | 90.23 | 84.97 | 87.48 | 89.60 | 87.50 | 88.10 | 91.59 | 82.42 | 88.40 |
| * | Random Chance | - | - | - | - | Link | 22-09-20 | 40.28 | 46.13 | 29.25 | 47.45 | 40.08 | 33.66 | 39.35 | 40.67 | 39.83 |
| 1 | Mutimodal-T-SciQ_Large 🥇 | LLM | Fine-tune | 738M | 738M | Link | 23-05-05 | 96.89 | 95.16 | 95.55 | 96.53 | 94.70 | 96.79 | 96.44 | 95.72 | 96.18 |
| 2 | MC-CoT_F-Large 🥈 | VLM | Fine-tune | 783M | - | Link | 23-11-23 | 97.47 | 90.44 | 93.18 | 96.97 | 93.75 | 94.49 | 95.30 | 94.13 | 94.88 |
| 3 | Honeybee (Vicuna-13B) 🥉 | VLM | Fine-tune | 13B | - | Link | 23-12-11 | 95.20 | 96.29 | 91.18 | 94.48 | 93.75 | 93.17 | 95.04 | 93.21 | 94.39 |
| 4 | Enigma-COT_Large | LLM | Fine-tune | 793M | 793M | Link | 23-07-24 | 97.51 | 84.70 | 94.73 | 96.68 | 91.37 | 95.89 | 94.46 | 93.47 | 94.11 |
| 5 | MC-CoT_Large | VLM | Fine-tune | 738M | - | Link | 23-11-23 | 95.47 | 89.99 | 91.82 | 95.11 | 92.66 | 93.24 | 94.27 | 91.76 | 93.37 |
| 6 | DPMM-CoT_Large | VLM | Fine-tune | 738M | 738M | Link | 23-12-14 | 95.52 | 90.33 | 91.36 | 95.50 | 93.26 | 92.68 | 93.28 | 93.47 | 93.35 |
| 7 | LLaVA (GPT-4 judge) | VLM | Fine-tune | 13B | 13B | Link | 23-04-17 | 91.56 | 96.74 | 91.09 | 90.62 | 88.99 | 93.52 | 92.73 | 92.16 | 92.53 |
| 8 | CoMD (Vicuna-7B) | VLM | Fine-tune | 7B | - | Link | 23-11-14 | 91.83 | 95.95 | 88.91 | 90.91 | 89.94 | 91.08 | 92.47 | 90.97 | 91.94 |
| 9 | Mutimodal-T-SciQ_Base | LLM | Fine-tune | 223M | 223M | Link | 23-05-05 | 91.52 | 91.45 | 92.45 | 91.94 | 90.33 | 92.26 | 92.11 | 91.10 | 91.75 |
| 10 | Multimodal-CoT_Large | VLM | Fine-tune | 738M | 738M | Link | 23-02-02 | 95.91 | 82.00 | 90.82 | 95.26 | 88.80 | 92.89 | 92.44 | 90.31 | 91.68 |
| 11 | PILL (LLaMA-7B) | VLM | Fine-tune | 7B | 45M | Link | 23-11-03 | 90.36 | 95.84 | 89.27 | 89.39 | 88.65 | 91.71 | 92.11 | 89.65 | 91.23 |
| 12 | LLaVA (ViT-L/16-224) | VLM | Fine-tune | 13B | - | Link | 23-12-04 | - | - | - | - | - | - | - | - | 91.2 |
| 13 | DPMM-CoT_Base | VLM | Fine-tune | 223M | 223M | Link | 23-12-14 | 92.72 | 87.85 | 89.91 | 92.72 | 90.48 | 91.29 | 91.45 | 90.11 | 90.97 |
| 14 | LLaVA | VLM | Fine-tune | 13B | 13B | Link | 23-04-17 | 90.36 | 95.95 | 88.00 | 89.49 | 88.00 | 90.66 | 90.93 | 90.90 | 90.92 |
| 15 | LaVIN-13B | VLM | Fine-tune | 13B | 5.4M | Link | 23-05-24 | 89.88 | 94.49 | 89.82 | 88.95 | 87.61 | 91.85 | 91.45 | 89.72 | 90.83 |
| 16 | MC-CoT_F-Base | VLM | Fine-tune | 248M | - |


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏 、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新 版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号