
多模态推理与思维链技术在科学问题回答中的创新应用
ScienceQA项目结合多模态推理和思维链技术,开发了一个包含图像和文本的大规模科学问题数据集。通过利用GPT等先进语言模型,该项目在科学问题回答任务中实现了高达96%的准确率。ScienceQA已被多家机构采用,并在多个顶级学术会议上展示,展现了其在科学教育和人工智能领域的应用潜力。
Data and code for NeurIPS 2022 Paper "Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering".
For more details, please refer to the project page with dataset exploration and visualization tools: https://scienceqa.github.io.
:bell: If you have any questions or suggestions, please don't hesitate to let us know. You can directly email Pan Lu at UCLA using the email address lupantech@gmail.com, comment on the Twitter, or post an issue on this repository.
[2023.12.29] 🚨 We have a major update featuring over 100 recent models! We appreciate your contributions and feedback. 🚀
[2023.05.04] ScienceQA Featured in Leaked Google Document: "We Have No Moat, And Neither Does OpenAI": A recent leak of an internal Google document highlights the advancements and impact of ScienceQA within the AI research community. 🎯
[2023.05.03] In April, our ScienceQA dataset was downloaded 1,421 times from HuggingFace Datasets, showcasing its growing popularity in the community. [Link] 🌟
[2023.04.19] Chameleon: Developed by UCLA and Microsoft, this innovative project achieves a new SOTA in the few-shot setting, reaching an impressive 86.54%. :star:
[2023.04.17] LLaVA: A collaborative effort by UW–Madison and Microsoft, this groundbreaking work sets a new SOTA at 92.53%. :star:
[2023.04.01] Our work is accepted by CVPR 2023 O-DRUM Workshop.
[2023.04.01] Our work is covered by Towards AI.
[2023.04.01] Our ScienceQA dataset was downloaded 377 times in March at HuggingFace Datasets.
[2023.03.30] The ScienceQA dataset is now included at OpenDataLab.
[2023.03.28] The ScienceQA dataset has served as the primary benchmark for LLaMA-Adapter, developed by Shanghai AI Laboratory, UCLA, and CUHK. :star:
[2023.02.13] Our work gives an oral presentation by Pan Lu at AAAI 2023 KnowledgeNLP Workshop.
[2023.02.05] Our work is covered by MarkTechPost.
[2023.02.24] The ScienceQA dataset is now included at HuggingFace Datasets. :star:
[2023.02.02] The ScienceQA dataset has served as the primary benchmark for the new generation of multimodal reasoning systems, Multimodal-CoT, developed by Amazon Science.
[2022.11.29] Our work gives an poster presentation by Pan Lu at NeurIPS 2022.
[2022.11.20] Our work is covered by Geek Culture | Medium.
[2022.11] Our work is now included at Paper with Code.
[2022.09.22] Our work is accepted to NeurIPS 2022. 🌟
[2022.09.20] Our work is featured in Deep AI.
Evaluation of different methods on the test split (whole: 4,241, mini: 1,000 examples). The accuracies across various categories and the overall average are reported below.
😀 You are invited to contribute your results to the TabMWP test split! Please send your result scores to this email or open a new issue at the github repository.
⚠️⚠️⚠️ Caveat: The data in the leaderboard is collected manually from existing papers. There might be some errors in the data, ambiguous data due to different interpretations, and missing data due to the lack of information in the papers. Make sure to double-check the data before using it. Please contact us at this email if you find any errors or have any suggestions. We appreciate your contributions and feedback.
The interactive leaderboard is available at https://scienceqa.github.io/leaderboard.html.
| # | Model | Method | Learning | #Size | #P | Link | Date | NAT | SOC | LAN | TXT | IMG | NO | G1-6 | G7-12 | Avg |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| * | Human Performance | - | - | - | - | Link | 22-09-20 | 90.23 | 84.97 | 87.48 | 89.60 | 87.50 | 88.10 | 91.59 | 82.42 | 88.40 |
| * | Random Chance | - | - | - | - | Link | 22-09-20 | 40.28 | 46.13 | 29.25 | 47.45 | 40.08 | 33.66 | 39.35 | 40.67 | 39.83 |
| 1 | Mutimodal-T-SciQ_Large 🥇 | LLM | Fine-tune | 738M | 738M | Link | 23-05-05 | 96.89 | 95.16 | 95.55 | 96.53 | 94.70 | 96.79 | 96.44 | 95.72 | 96.18 |
| 2 | MC-CoT_F-Large 🥈 | VLM | Fine-tune | 783M | - | Link | 23-11-23 | 97.47 | 90.44 | 93.18 | 96.97 | 93.75 | 94.49 | 95.30 | 94.13 | 94.88 |
| 3 | Honeybee (Vicuna-13B) 🥉 | VLM | Fine-tune | 13B | - | Link | 23-12-11 | 95.20 | 96.29 | 91.18 | 94.48 | 93.75 | 93.17 | 95.04 | 93.21 | 94.39 |
| 4 | Enigma-COT_Large | LLM | Fine-tune | 793M | 793M | Link | 23-07-24 | 97.51 | 84.70 | 94.73 | 96.68 | 91.37 | 95.89 | 94.46 | 93.47 | 94.11 |
| 5 | MC-CoT_Large | VLM | Fine-tune | 738M | - | Link | 23-11-23 | 95.47 | 89.99 | 91.82 | 95.11 | 92.66 | 93.24 | 94.27 | 91.76 | 93.37 |
| 6 | DPMM-CoT_Large | VLM | Fine-tune | 738M | 738M | Link | 23-12-14 | 95.52 | 90.33 | 91.36 | 95.50 | 93.26 | 92.68 | 93.28 | 93.47 | 93.35 |
| 7 | LLaVA (GPT-4 judge) | VLM | Fine-tune | 13B | 13B | Link | 23-04-17 | 91.56 | 96.74 | 91.09 | 90.62 | 88.99 | 93.52 | 92.73 | 92.16 | 92.53 |
| 8 | CoMD (Vicuna-7B) | VLM | Fine-tune | 7B | - | Link | 23-11-14 | 91.83 | 95.95 | 88.91 | 90.91 | 89.94 | 91.08 | 92.47 | 90.97 | 91.94 |
| 9 | Mutimodal-T-SciQ_Base | LLM | Fine-tune | 223M | 223M | Link | 23-05-05 | 91.52 | 91.45 | 92.45 | 91.94 | 90.33 | 92.26 | 92.11 | 91.10 | 91.75 |
| 10 | Multimodal-CoT_Large | VLM | Fine-tune | 738M | 738M | Link | 23-02-02 | 95.91 | 82.00 | 90.82 | 95.26 | 88.80 | 92.89 | 92.44 | 90.31 | 91.68 |
| 11 | PILL (LLaMA-7B) | VLM | Fine-tune | 7B | 45M | Link | 23-11-03 | 90.36 | 95.84 | 89.27 | 89.39 | 88.65 | 91.71 | 92.11 | 89.65 | 91.23 |
| 12 | LLaVA (ViT-L/16-224) | VLM | Fine-tune | 13B | - | Link | 23-12-04 | - | - | - | - | - | - | - | - | 91.2 |
| 13 | DPMM-CoT_Base | VLM | Fine-tune | 223M | 223M | Link | 23-12-14 | 92.72 | 87.85 | 89.91 | 92.72 | 90.48 | 91.29 | 91.45 | 90.11 | 90.97 |
| 14 | LLaVA | VLM | Fine-tune | 13B | 13B | Link | 23-04-17 | 90.36 | 95.95 | 88.00 | 89.49 | 88.00 | 90.66 | 90.93 | 90.90 | 90.92 |
| 15 | LaVIN-13B | VLM | Fine-tune | 13B | 5.4M | Link | 23-05-24 | 89.88 | 94.49 | 89.82 | 88.95 | 87.61 | 91.85 | 91.45 | 89.72 | 90.83 |
| 16 | MC-CoT_F-Base | VLM | Fine-tune | 248M | - |


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作


AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号