
视觉数学推理评估基准
MathVista是一个评估AI模型视觉数学推理能力的基准测试。该数据集包含6,141个样本,涵盖31个多模态数据集。任务要求模型具备深度视觉理解和复合推理能力,对当前顶尖AI模型构成挑战。MathVista为研究人员提供了一个衡量AI模型在视觉数学任务中表现的标准化工具。
Code for the Paper "MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts".
For more details, please refer to the project page with dataset exploration and visualization tools: https://mathvista.github.io/.
:bell: If you have any questions or suggestions, please don't hesitate to let us know. You can comment on the Twitter, or post an issue on this repository.
[Webpage] [Paper] [Huggingface Dataset] [Leaderboard] [Visualization] [Result Explorer] [Twitter]
<p align="center"> <img src="assets/logo_v1.png" width="40%"> <br> Tentative logo for <b>MathVista</b>. Generated by DALL·E 3 prompted by <br>"A photo-based logo with a gradient of soft blue and modern typography, accompanied by the title 'MathVista'". </p> ## OutlinesLarge Language Models (LLMs) and Large Multimodal Models (LMMs) exhibit impressive problem-solving skills in many tasks and domains, but their ability in mathematical reasoning in visual contexts has not been systematically studied. To bridge this gap, we present MathVista, a benchmark designed to combine challenges from diverse mathematical and visual tasks. It consists of 6,141 examples, derived from 28 existing multimodal datasets involving mathematics and 3 newly created datasets (i.e., IQTest, FunctionQA, and PaperQA). Completing these tasks requires fine-grained, deep visual understanding and compositional reasoning, which all state-of-the-art foundation models find challenging.
<p align="center"> <img src="assets/data-composition.png" width="40%"> <br> Source dataset distribution of <b>MathVista</b>. </p>With MathVista, we have conducted a comprehensive, quantitative evaluation of 12 prominent foundation models. The best-performing GPT-4V model achieves an overall accuracy of 49.9%, substantially outperforming Bard, the second-best performer, by 15.1%. Our in-depth analysis reveals that the superiority of GPT-4V is mainly attributed to its enhanced visual perception and mathematical reasoning. However, GPT-4V still falls short of human performance by 10.4%, as it often struggles to understand complex figures and perform rigorous reasoning. This significant gap underscores the critical role that MathVista will play in the development of general-purpose AI agents capable of tackling mathematically intensive and visually rich real-world tasks.
<p align="center"> <img src="assets/score_leaderboard_gpt4v.png" width="70%"> <br> Accuracy scores the testmini set (1,000 examples) of <b>MathVista</b>. </p>We further explore the new ability of self-verification, the use of self-consistency, and the goal-directed multi-turn human-AI dialogues, highlighting the promising potential of GPT-4V for future research.
<p align="center"> <img src="assets/tease_scores_version4_gemini.png" width="80%"> <br> Accuracy scores of one leading LLM (i.e., PoT GPT-4), four primary LMMs, random chance, and human performance on <b>MathVista</b>. </p> <details> <summary>🔍 See the accuracy scores without Gemini Ultra</summary> <p align="center"> <img src="assets/tease_scores_gpt4v.png" width="80%"> <br> Accuracy scores of one leading LLM (i.e., PoT GPT-4), four primary LMMs, random chance, and human performance on <b>MathVista</b>. </p> </details>For more details, you can find our project page here and our paper here.
🚨🚨 The leaderboard is continuously being updated.
The evaluation instructions are available at 🔮 Evaluations on MathVista and 📝 Evaluation Scripts of Our Models.
To submit your results to the leaderboard on the testmini subset, please send to this email with your result json file and score json file, referring to the template files below:
To submit your results to the leaderboard on the test subset, please send to this email with your result file (we will generate the score file for you), referring to the template file below:
Accuracy scores on the testmini subset (1,000 examples):
| # | Model | Method | Source | Date | ALL | FQA | GPS | MWP | TQA | VQA | ALG | ARI | GEO | LOG | NUM | SCI | STA |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - | Human Performance* | - | Link | 2023-10-03 | 60.3 | 59.7 | 48.4 | 73.0 | 63.2 | 55.9 | 50.9 | 59.2 | 51.4 | 40.7 | 53.8 | 64.9 | 63.9 |
| 1 | Grok-2 🥇 | LMM 🖼️ | Link | 2024-08-13 | 69.0 | - | - | - | - | - | - | - | - | - | - | - | - |
| 2 | Grok-2 mini 🥈 | LMM 🖼️ | Link | 2024-08-13 | 68.1 | - | - | - | - | - | - | - | - | - | - | - | - |
| 3 | Claude 3.5 Sonnet 🥉 | LMM 🖼️ | Link | 2024-06-20 | 67.7 | - | - | - | - | - | - | - | - | - | - | - | - |
| 4 | LLaVA-OneVision | LMM 🖼️ | Link | 2024-08-06 | 67.5 | - | - | - | - |


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障 碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩 剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具 。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号