<img src="https://yellow-cdn.veclightyear.com/35dd4d3f/77381b51-b605-41e2-a9c7-76c9ec359c7f.png" width="400px"></img>
在Pytorch中实现<a href="https://arxiv.org/abs/2306.15687">Voicebox</a>,来自MetaAI的新一代文本转语音模型。<a href="https://about.fb.com/news/2023/06/introducing-voicebox-ai-for-speech-generation/">新闻稿</a>
在这项工作中,我们将使用旋转嵌入。作者似乎没有意识到ALiBi不能简单地用于双向模型。
该论文还解决了时间嵌入错误地受到相对距离影响的问题(他们沿音频令牌的帧维度连接时间嵌入)。这个库将使用自适应归一化,正如在<a href="https://arxiv.org/abs/2211.07292">Paella</a>中成功应用的那样。
感谢<a href="https://translated.com"><img style="vertical-align: middle;" src="https://yellow-cdn.veclightyear.com/35dd4d3f/75d53761-8018-4c3b-8ca1-53570fe306cd.png" height="20px" alt="Translated"><img></a>授予我<a href="https://imminent.translated.com/research-grants-ceremony-innovations-in-language-technology">Imminent Grant</a>,以推进开源码文本转语音解决方案的状态。本项目在这项资助下启动并将完成。
感谢<a href="https://stability.ai/">StabilityAI</a>的慷慨赞助,以及我的其他赞助商,使我能够有独立性开发开源人工智能。
感谢<a href="https://github.com/b-chiang">Bryan Chiang</a>的持续代码审查,分享他在TTS方面的专业知识, 并指引我到<a href="https://github.com/atong01/conditional-flow-matching">一个开源实现</a>的条件流匹配中。
感谢<a href="https://github.com/manmay-nakhashi">Manmay</a>帮助这个库以对齐代码开始。
感谢<a href="https://github.com/chenht2010">@chenht2010</a>发现旋转位置的一个bug,并验证库中的代码可以收敛。
感谢<a href="https://github.com/lucasnewman">Lucas Newman</a>(再次)提交了所有用于Spear-TTS条件Voicebox训练的训练代码的pull request!
感谢<a href="https://github.com/lucasnewman">Lucas Newman</a>展示了整个系统在Spear-TTS条件下运行正常。训练收敛效果比<a href="https://github.com/lucidrains/soundstorm-pytorch">Soundstorm</a>还要好。
$ pip install voicebox-pytorch
使用<a href="https://github.com/lucidrains/spear-tts-pytorch">SpearTTS</a>中的TextToSemantic模块进行训练和采样
import torch from voicebox_pytorch import ( VoiceBox, EncodecVoco, ConditionalFlowMatcherWrapper, HubertWithKmeans, TextToSemantic ) # https://github.com/facebookresearch/fairseq/tree/main/examples/hubert wav2vec = HubertWithKmeans( checkpoint_path = '/path/to/hubert/checkpoint.pt', kmeans_path = '/path/to/hubert/kmeans.bin' ) text_to_semantic = TextToSemantic( wav2vec = wav2vec, dim = 512, source_depth = 1, target_depth = 1, use_openai_tokenizer = True ) text_to_semantic.load('/path/to/trained/spear-tts/model.pt') model = VoiceBox( dim = 512, audio_enc_dec = EncodecVoco(), num_cond_tokens = 500, depth = 2, dim_head = 64, heads = 16 ) cfm_wrapper = ConditionalFlowMatcherWrapper( voicebox = model, text_to_semantic = text_to_semantic ) # 模拟数据 audio = torch.randn(2, 12000) # 训练 loss = cfm_wrapper(audio) loss.backward() # 经过大量训练之后 texts = [ '西班牙的雨水主要落在平原上', '她在海边卖海贝壳' ] cond = torch.randn(2, 12000) sampled = cfm_wrapper.sample(cond = cond, texts = texts) # (2, 1, <音频长度>)
对于无条件训练,VoiceBox上的condition_on_text必须设置为False
import torch from voicebox_pytorch import ( VoiceBox, ConditionalFlowMatcherWrapper ) model = VoiceBox( dim = 512, num_cond_tokens = 500, depth = 2, dim_head = 64, heads = 16, condition_on_text = False ) cfm_wrapper = ConditionalFlowMatcherWrapper( voicebox = model ) # 模拟数据 x = torch.randn(2, 1024, 512) # 训练 loss = cfm_wrapper(x) loss.backward() # 经过大量训练之后 cond = torch.randn(2, 1024, 512) sampled = cfm_wrapper.sample(cond = cond) # (2, 1024, 512)
阅读并内化原始流匹配论文
获取带有0.2-0.3的p_drop的基本掩码生成逻辑用于ICL
处理p_drop,不同于voicebox和持续时间模型
支持torchdiffeq和torchode
切换到自适应rmsnorm用于时间调节
添加encodec / voco作为起步
设置原始音频的训练和采样,如果传入audio_enc_dec
与对数mel频谱/encodec - vocos整合
spear-tts集成
基本加速训练器 - 感谢@lucasnewman!
清理NS2对齐器类,然后设置持续时间预测训练
找出MelVoco编码的正确设置,因为重构的音频长度较长
计算每帧对应的秒数,并在AudioEncoderDecoder上添加为属性 - 采样时允许指定秒数
@article{Le2023VoiceboxTM, title = {Voicebox: Text-Guided Multilingual Universal Speech Generation at Scale}, author = {Matt Le and Apoorv Vyas and Bowen Shi and Brian Karrer and Leda Sari and Rashel Moritz and Mary Williamson and Vimal Manohar and Yossi Adi and Jay Mahadeokar and Wei-Ning Hsu}, journal = {ArXiv}, year = {2023}, volume = {abs/2306.15687}, url = {https://api.semanticscholar.org/CorpusID:259275061} }
@inproceedings{dao2022flashattention, title = {Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness}, author = {Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{\'e}, Christopher}, booktitle = {Advances in Neural Information Processing Systems}, year = {2022} }
@misc{torchdiffeq, author = {Chen, Ricky T. Q.}, title = {torchdiffeq}, year = {2018}, url = {https://github.com/rtqichen/torchdiffeq}, }
@inproceedings{lienen2022torchode, title = {torchode: A Parallel {ODE} Solver for PyTorch}, author = {Marten Lienen and Stephan G{\"u}nnemann}, booktitle = {The Symbiosis of Deep Learning and Differential Equations II, NeurIPS}, year = {2022}, url = {https://openreview.net/forum?id=uiKVKTiUYB0} }
@article{siuzdak2023vocos, title = {Vocos: Closing the gap between time-domain and Fourier-based neural vocoders for high-quality audio synthesis}, author = {Siuzdak, Hubert}, journal = {arXiv preprint arXiv:2306.00814}, year = {2023} }
@misc{darcet2023vision, title = {Vision Transformers Need Registers}, author = {Timothée Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski}, year = {2023}, eprint = {2309.16588}, archivePrefix = {arXiv}, primaryClass = {cs.CV} }
@inproceedings{Dehghani2023ScalingVT, title = {Scaling Vision Transformers to 22 Billion Parameters}, author = {Mostafa Dehghani and Josip Djolonga and Basil Mustafa and Piotr Padlewski and Jonathan Heek and Justin Gilmer and Andreas Steiner and Mathilde Caron and Robert Geirhos and Ibrahim M. Alabdulmohsin and Rodolphe Jenatton and Lucas Beyer and Michael Tschannen and Anurag Arnab and Xiao Wang and Carlos Riquelme and Matthias Minderer and Joan Puigcerver and Utku Evci and Manoj Kumar and Sjoerd van Steenkiste and Gamaleldin F. Elsayed and Aravindh Mahendran and Fisher Yu and Avital Oliver and Fantine Huot and Jasmijn Bastings and Mark Collier and Alexey A. Gritsenko and Vighnesh Birodkar and Cristina Nader Vasconcelos and Yi Tay and Thomas Mensink and Alexander Kolesnikov and Filip Paveti'c and Dustin Tran and Thomas Kipf and Mario Luvci'c and Xiaohua Zhai and Daniel Keysers and Jeremiah Harmsen and Neil Houlsby}, booktitle = {International Conference on Machine Learning}, year = {2023}, url = {https://api.semanticscholar.org/CorpusID:256808367} }
@inproceedings{Katsch2023GateLoopFD, title = {GateLoop: Fully Data-Controlled Linear Recurrence for Sequence Modeling}, author = {Tobias Katsch}, year = {2023}, url = {https://api.semanticscholar.org/CorpusID:265018962} }


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号