<img src="./images/rin.png" width="500png"></img>
<img src="./images/latent-self-conditioning.png" width="600px"></img>
Implementation of <a href="https://arxiv.org/abs/2212.11972">Recurrent Interface Network (RIN)</a>, for highly efficient generation of images and video without cascading networks, in Pytorch. The author unawaredly reinvented the <a href="https://github.com/lucidrains/isab-pytorch">induced set-attention block</a> from the <a href="https://arxiv.org/abs/1810.00825">set transformers</a> paper. They also combine this with the self-conditioning technique from the <a href="https://arxiv.org/abs/2208.04202">Bit Diffusion paper</a>, specifically for the latents. The last ingredient seems to be a new noise function based around the sigmoid, which the author claims is better than cosine scheduler for larger images.
The big surprise is that the generations can reach this level of fidelity. Will need to verify this on my own machine
Additionally, we will try adding an extra linear attention on the main branch as well as self conditioning in the pixel-space.
The insight of being able to self-condition on any hidden state of the network as well as the newly proposed sigmoid noise schedule are the two main findings.
This repository also contains the ability to <a href="https://arxiv.org/abs/2301.10972">noise higher resolution images more</a>, using the scale keyword argument on the GaussianDiffusion class. It also contains the simple linear gamma schedule proposed in that paper.
$ pip install rin-pytorch
from rin_pytorch import GaussianDiffusion, RIN, Trainer model = RIN( dim = 256, # model dimensions image_size = 128, # image size patch_size = 8, # patch size depth = 6, # depth num_latents = 128, # number of latents. they used 256 in the paper dim_latent = 512, # can be greater than the image dimension (dim) for greater capacity latent_self_attn_depth = 4, # number of latent self attention blocks per recurrent step, K in the paper ).cuda() diffusion = GaussianDiffusion( model, timesteps = 400, train_prob_self_cond = 0.9, # how often to self condition on latents scale = 1. # this will be set to < 1. for more noising and leads to better convergence when training on higher resolution images (512, 1024) - input noised images will be auto variance normalized ).cuda() trainer = Trainer( diffusion, '/path/to/your/images', num_samples = 16, train_batch_size = 4, gradient_accumulate_every = 4, train_lr = 1e-4, save_and_sample_every = 1000, train_num_steps = 700000, # total training steps ema_decay = 0.995, # exponential moving average decay ) trainer.train()
Results will be saved periodically to the ./results folder
If you would like to experiment with the RIN and GaussianDiffusion class outside the Trainer
import torch from rin_pytorch import RIN, GaussianDiffusion model = RIN( dim = 256, # model dimensions image_size = 128, # image size patch_size = 8, # patch size depth = 6, # depth num_latents = 128, # number of latents. they used 256 in the paper latent_self_attn_depth = 4, # number of latent self attention blocks per recurrent step, K in the paper ).cuda() diffusion = GaussianDiffusion( model, timesteps = 1000, train_prob_self_cond = 0.9, scale = 1. ) training_images = torch.randn(8, 3, 128, 128).cuda() # images are normalized from 0 to 1 loss = diffusion(training_images) loss.backward() # after a lot of training sampled_images = diffusion.sample(batch_size = 4) sampled_images.shape # (4, 3, 128, 128)
@misc{jabri2022scalable, title = {Scalable Adaptive Computation for Iterative Generation}, author = {Allan Jabri and David Fleet and Ting Chen}, year = {2022}, eprint = {2212.11972}, archivePrefix = {arXiv}, primaryClass = {cs.LG} }
@inproceedings{Chen2023OnTI, title = {On the Importance of Noise Scheduling for Diffusion Models}, author = {Ting Chen}, year = {2023} }
@article{Salimans2022ProgressiveDF, title = {Progressive Distillation for Fast Sampling of Diffusion Models}, author = {Tim Salimans and Jonathan Ho}, journal = {ArXiv}, year = {2022}, volume = {abs/2202.00512} }
@misc{https://doi.org/10.48550/arxiv.2302.01327, doi = {10.48550/ARXIV.2302.01327}, url = {https://arxiv.org/abs/2302.01327}, author = {Kumar, Manoj and Dehghani, Mostafa and Houlsby, Neil}, title = {Dual PatchNorm}, publisher = {arXiv}, year = {2023}, copyright = {Creative Commons Attribution 4.0 International} }
@inproceedings{Hang2023EfficientDT, title = {Efficient Diffusion Training via Min-SNR Weighting Strategy}, author = {Tiankai Hang and Shuyang Gu and Chen Li and Jianmin Bao and Dong Chen and Han Hu and Xin Geng and Baining Guo}, year = {2023} }
@inproceedings{dao2022flashattention, title = {Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness}, author = {Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{\'e}, Christopher}, booktitle = {Advances in Neural Information Processing Systems}, year = {2022} }
@inproceedings{Hoogeboom2023simpleDE, title = {simple diffusion: End-to-end diffusion for high resolution images}, author = {Emiel Hoogeboom and Jonathan Heek and Tim Salimans}, year = {2023} }


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种 自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号