recurrent-interface-network-pytorch

recurrent-interface-network-pytorch

无需级联网络的高效图像视频生成模型

Recurrent Interface Network (RIN)是一个基于PyTorch的深度学习模型,用于高效生成高质量图像和视频。该模型结合了诱导集合注意力块、潜在空间自我调节技术和新型噪声函数,无需使用级联网络即可实现出色的生成效果。RIN还支持高分辨率图像的增强噪声处理和线性gamma调度,为图像生成任务提供了灵活的解决方案。

RIN生成扩散模型图像生成PyTorch自条件Github开源项目

<img src="./images/rin.png" width="500png"></img>

<img src="./images/latent-self-conditioning.png" width="600px"></img>

Recurrent Interface Network (RIN) - Pytorch

Implementation of <a href="https://arxiv.org/abs/2212.11972">Recurrent Interface Network (RIN)</a>, for highly efficient generation of images and video without cascading networks, in Pytorch. The author unawaredly reinvented the <a href="https://github.com/lucidrains/isab-pytorch">induced set-attention block</a> from the <a href="https://arxiv.org/abs/1810.00825">set transformers</a> paper. They also combine this with the self-conditioning technique from the <a href="https://arxiv.org/abs/2208.04202">Bit Diffusion paper</a>, specifically for the latents. The last ingredient seems to be a new noise function based around the sigmoid, which the author claims is better than cosine scheduler for larger images.

The big surprise is that the generations can reach this level of fidelity. Will need to verify this on my own machine

Additionally, we will try adding an extra linear attention on the main branch as well as self conditioning in the pixel-space.

The insight of being able to self-condition on any hidden state of the network as well as the newly proposed sigmoid noise schedule are the two main findings.

This repository also contains the ability to <a href="https://arxiv.org/abs/2301.10972">noise higher resolution images more</a>, using the scale keyword argument on the GaussianDiffusion class. It also contains the simple linear gamma schedule proposed in that paper.

Appreciation

  • <a href="https://stability.ai/">Stability.ai</a> for the generous sponsorship to work on cutting edge artificial intelligence research

Install

$ pip install rin-pytorch

Usage

from rin_pytorch import GaussianDiffusion, RIN, Trainer model = RIN( dim = 256, # model dimensions image_size = 128, # image size patch_size = 8, # patch size depth = 6, # depth num_latents = 128, # number of latents. they used 256 in the paper dim_latent = 512, # can be greater than the image dimension (dim) for greater capacity latent_self_attn_depth = 4, # number of latent self attention blocks per recurrent step, K in the paper ).cuda() diffusion = GaussianDiffusion( model, timesteps = 400, train_prob_self_cond = 0.9, # how often to self condition on latents scale = 1. # this will be set to < 1. for more noising and leads to better convergence when training on higher resolution images (512, 1024) - input noised images will be auto variance normalized ).cuda() trainer = Trainer( diffusion, '/path/to/your/images', num_samples = 16, train_batch_size = 4, gradient_accumulate_every = 4, train_lr = 1e-4, save_and_sample_every = 1000, train_num_steps = 700000, # total training steps ema_decay = 0.995, # exponential moving average decay ) trainer.train()

Results will be saved periodically to the ./results folder

If you would like to experiment with the RIN and GaussianDiffusion class outside the Trainer

import torch from rin_pytorch import RIN, GaussianDiffusion model = RIN( dim = 256, # model dimensions image_size = 128, # image size patch_size = 8, # patch size depth = 6, # depth num_latents = 128, # number of latents. they used 256 in the paper latent_self_attn_depth = 4, # number of latent self attention blocks per recurrent step, K in the paper ).cuda() diffusion = GaussianDiffusion( model, timesteps = 1000, train_prob_self_cond = 0.9, scale = 1. ) training_images = torch.randn(8, 3, 128, 128).cuda() # images are normalized from 0 to 1 loss = diffusion(training_images) loss.backward() # after a lot of training sampled_images = diffusion.sample(batch_size = 4) sampled_images.shape # (4, 3, 128, 128)

Todo

  • experiment with <a href="https://github.com/lucidrains/bidirectional-cross-attention/issues">bidirectional cross attention</a>
  • add ability to use 2d sinusoidal pos emb, from simple vit paper

Citations

@misc{jabri2022scalable, title = {Scalable Adaptive Computation for Iterative Generation}, author = {Allan Jabri and David Fleet and Ting Chen}, year = {2022}, eprint = {2212.11972}, archivePrefix = {arXiv}, primaryClass = {cs.LG} }
@inproceedings{Chen2023OnTI, title = {On the Importance of Noise Scheduling for Diffusion Models}, author = {Ting Chen}, year = {2023} }
@article{Salimans2022ProgressiveDF, title = {Progressive Distillation for Fast Sampling of Diffusion Models}, author = {Tim Salimans and Jonathan Ho}, journal = {ArXiv}, year = {2022}, volume = {abs/2202.00512} }
@misc{https://doi.org/10.48550/arxiv.2302.01327, doi = {10.48550/ARXIV.2302.01327}, url = {https://arxiv.org/abs/2302.01327}, author = {Kumar, Manoj and Dehghani, Mostafa and Houlsby, Neil}, title = {Dual PatchNorm}, publisher = {arXiv}, year = {2023}, copyright = {Creative Commons Attribution 4.0 International} }
@inproceedings{Hang2023EfficientDT, title = {Efficient Diffusion Training via Min-SNR Weighting Strategy}, author = {Tiankai Hang and Shuyang Gu and Chen Li and Jianmin Bao and Dong Chen and Han Hu and Xin Geng and Baining Guo}, year = {2023} }
@inproceedings{dao2022flashattention, title = {Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness}, author = {Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{\'e}, Christopher}, booktitle = {Advances in Neural Information Processing Systems}, year = {2022} }
@inproceedings{Hoogeboom2023simpleDE, title = {simple diffusion: End-to-end diffusion for high resolution images}, author = {Emiel Hoogeboom and Jonathan Heek and Tim Salimans}, year = {2023} }

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多