Mixture of Experts(MoE)是一个基于Pytorch框架的项目,旨在通过稀疏门控技术(Sparsely Gated)大幅提高语言模型的参数容量,同时保持计算量不变。该项目主要是对Tensorflow实现版本的逐行转换,并加以若干增强。项目推介使用ST Mixture of Experts作为其延续和更新。
用户可以通过如下简单的命令安装Mixture of Experts:
$ pip install mixture_of_experts
用户可以通过以下简单的Python代码来实现MoE模型:
import torch from torch import nn from mixture_of_experts import MoE moe = MoE( dim = 512, num_experts = 16, hidden_dim = 512 * 4, activation = nn.LeakyReLU, second_policy_train = 'random', second_policy_eval = 'random', second_threshold_train = 0.2, second_threshold_eval = 0.2, capacity_factor_train = 1.25, capacity_factor_eval = 2., loss_coef = 1e-2 ) inputs = torch.randn(4, 1024, 512) out, aux_loss = moe(inputs)
这些设置足以在单台机器上运行,但如果需要实现一个两级分层专家模型,可以参考以下代码:
import torch from mixture_of_experts import HeirarchicalMoE moe = HeirarchicalMoE( dim = 512, num_experts = (4, 4) ) inputs = torch.randn(4, 1024, 512) out, aux_loss = moe(inputs)
用户还可以通过调整专家数量来实现更复杂的模型,例如一个具有10亿参数的网络:
import torch from mixture_of_experts import HeirarchicalMoE moe = HeirarchicalMoE( dim = 512, num_experts = (22, 22) ).cuda() inputs = torch.randn(1, 1024, 512).cuda() out, aux_loss = moe(inputs) total_params = sum(p.numel() for p in moe.parameters()) print(f'number of parameters - {total_params}')
如果用户希望为模型定义更复杂的专家网络,那么可以创建自己的网络,并将其传递给MoE
类:
import torch from torch import nn from mixture_of_experts import MoE class Experts(nn.Module): def __init__(self, dim, num_experts = 16): super().__init__() self.w1 = nn.Parameter(torch.randn(num_experts, dim, dim * 4)) self.w2 = nn.Parameter(torch.randn(num_experts, dim * 4, dim * 4)) self.w3 = nn.Parameter(torch.randn(num_experts, dim * 4, dim)) self.act = nn.LeakyReLU(inplace = True) def forward(self, x): hidden1 = self.act(torch.einsum('end,edh->enh', x, self.w1)) hidden2 = self.act(torch.einsum('end,edh->enh', hidden1, self.w2)) out = torch.einsum('end,edh->enh', hidden2, self.w3) return out experts = Experts(512, num_experts = 16) moe = MoE( dim = 512, num_experts = 16, experts = experts ) inputs = torch.randn(4, 1024, 512) out, aux_loss = moe(inputs)
通过这种方式,用户可以根据具体需求调整和优化模型,以适应不同的应用场景和研究方向。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。