FLASH-pytorch

FLASH-pytorch

FLASH 线性时间内提升Transformer效能的开源实现

FLASH-pytorch是一个开源项目,实现了一种高效的Transformer变体。该项目采用门控注意力单元(GAU)和分组线性注意力,在线性时间内提升模型性能。它提供简洁API,支持自回归和非自回归模式,并整合多种位置编码技术。这一工具使研究人员和开发者能够便捷地探索和应用Transformer的最新优化技术。

FLASHTransformer深度学习注意力机制PyTorchGithub开源项目

<img src="./flash.png" width="500px"></img>

FLASH - Pytorch

Implementation of the Transformer variant proposed in the paper <a href="https://arxiv.org/abs/2202.10447">Transformer Quality in Linear Time</a>

Install

$ pip install FLASH-pytorch

Usage

The main novel circuit in this paper is the "Gated Attention Unit", which they claim can replace multi-headed attention while reducing it to just one head.

It uses a relu squared activation in place of the softmax, the activation of which was first seen in the <a href="https://arxiv.org/abs/2109.08668">Primer paper</a>, and the use of ReLU in <a href="https://arxiv.org/abs/2104.07012">ReLA Transformer</a>. The gating style seems mostly inspired by <a href="https://arxiv.org/abs/2105.08050">gMLPs</a>.

import torch from flash_pytorch import GAU gau = GAU( dim = 512, query_key_dim = 128, # query / key dimension causal = True, # autoregressive or not expansion_factor = 2, # hidden dimension = dim * expansion_factor laplace_attn_fn = True # new Mega paper claims this is more stable than relu squared as attention function ) x = torch.randn(1, 1024, 512) out = gau(x) # (1, 1024, 512)

The authors then combine GAU with Katharopoulos linear attention, using grouping of the sequences to overcome a known issue with autoregressive linear attention.

This combination of the quadratic gated attention unit with grouped linear attention they named FLASH

You can also use this quite easily

import torch from flash_pytorch import FLASH flash = FLASH( dim = 512, group_size = 256, # group size causal = True, # autoregressive or not query_key_dim = 128, # query / key dimension expansion_factor = 2., # hidden dimension = dim * expansion_factor laplace_attn_fn = True # new Mega paper claims this is more stable than relu squared as attention function ) x = torch.randn(1, 1111, 512) # sequence will be auto-padded to nearest group size out = flash(x) # (1, 1111, 512)

Finally, you can use the full FLASH transformer as mentioned in the paper. This contains all the positional embeddings mentioned in the paper. Absolute positional embedding uses scaled sinusoidal. GAU quadratic attention will get one-headed T5 relative positional bias. On top of all this, both GAU attention as well as the linear attention will be rotary embedded (RoPE).

import torch from flash_pytorch import FLASHTransformer model = FLASHTransformer( num_tokens = 20000, # number of tokens dim = 512, # model dimension depth = 12, # depth causal = True, # autoregressive or not group_size = 256, # size of the groups query_key_dim = 128, # dimension of queries / keys expansion_factor = 2., # hidden dimension = dim * expansion_factor norm_type = 'scalenorm', # in the paper, they claimed scalenorm led to faster training at no performance hit. the other option is 'layernorm' (also default) shift_tokens = True # discovered by an independent researcher in Shenzhen @BlinkDL, this simply shifts half of the feature space forward one step along the sequence dimension - greatly improved convergence even more in my local experiments ) x = torch.randint(0, 20000, (1, 1024)) logits = model(x) # (1, 1024, 20000)

Test on Autoregressive Enwik8

$ python train.py

Citations

@article{Hua2022TransformerQI, title = {Transformer Quality in Linear Time}, author = {Weizhe Hua and Zihang Dai and Hanxiao Liu and Quoc V. Le}, journal = {ArXiv}, year = {2022}, volume = {abs/2202.10447} }
@software{peng_bo_2021_5196578, author = {PENG Bo}, title = {BlinkDL/RWKV-LM: 0.01}, month = {aug}, year = {2021}, publisher = {Zenodo}, version = {0.01}, doi = {10.5281/zenodo.5196578}, url = {https://doi.org/10.5281/zenodo.5196578} }
@inproceedings{Ma2022MegaMA, title = {Mega: Moving Average Equipped Gated Attention}, author = {Xuezhe Ma and Chunting Zhou and Xiang Kong and Junxian He and Liangke Gui and Graham Neubig and Jonathan May and Luke Zettlemoyer}, year = {2022} }

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多