FLASH-pytorch

FLASH-pytorch

FLASH 线性时间内提升Transformer效能的开源实现

FLASH-pytorch是一个开源项目,实现了一种高效的Transformer变体。该项目采用门控注意力单元(GAU)和分组线性注意力,在线性时间内提升模型性能。它提供简洁API,支持自回归和非自回归模式,并整合多种位置编码技术。这一工具使研究人员和开发者能够便捷地探索和应用Transformer的最新优化技术。

FLASHTransformer深度学习注意力机制PyTorchGithub开源项目

<img src="./flash.png" width="500px"></img>

FLASH - Pytorch

Implementation of the Transformer variant proposed in the paper <a href="https://arxiv.org/abs/2202.10447">Transformer Quality in Linear Time</a>

Install

$ pip install FLASH-pytorch

Usage

The main novel circuit in this paper is the "Gated Attention Unit", which they claim can replace multi-headed attention while reducing it to just one head.

It uses a relu squared activation in place of the softmax, the activation of which was first seen in the <a href="https://arxiv.org/abs/2109.08668">Primer paper</a>, and the use of ReLU in <a href="https://arxiv.org/abs/2104.07012">ReLA Transformer</a>. The gating style seems mostly inspired by <a href="https://arxiv.org/abs/2105.08050">gMLPs</a>.

import torch from flash_pytorch import GAU gau = GAU( dim = 512, query_key_dim = 128, # query / key dimension causal = True, # autoregressive or not expansion_factor = 2, # hidden dimension = dim * expansion_factor laplace_attn_fn = True # new Mega paper claims this is more stable than relu squared as attention function ) x = torch.randn(1, 1024, 512) out = gau(x) # (1, 1024, 512)

The authors then combine GAU with Katharopoulos linear attention, using grouping of the sequences to overcome a known issue with autoregressive linear attention.

This combination of the quadratic gated attention unit with grouped linear attention they named FLASH

You can also use this quite easily

import torch from flash_pytorch import FLASH flash = FLASH( dim = 512, group_size = 256, # group size causal = True, # autoregressive or not query_key_dim = 128, # query / key dimension expansion_factor = 2., # hidden dimension = dim * expansion_factor laplace_attn_fn = True # new Mega paper claims this is more stable than relu squared as attention function ) x = torch.randn(1, 1111, 512) # sequence will be auto-padded to nearest group size out = flash(x) # (1, 1111, 512)

Finally, you can use the full FLASH transformer as mentioned in the paper. This contains all the positional embeddings mentioned in the paper. Absolute positional embedding uses scaled sinusoidal. GAU quadratic attention will get one-headed T5 relative positional bias. On top of all this, both GAU attention as well as the linear attention will be rotary embedded (RoPE).

import torch from flash_pytorch import FLASHTransformer model = FLASHTransformer( num_tokens = 20000, # number of tokens dim = 512, # model dimension depth = 12, # depth causal = True, # autoregressive or not group_size = 256, # size of the groups query_key_dim = 128, # dimension of queries / keys expansion_factor = 2., # hidden dimension = dim * expansion_factor norm_type = 'scalenorm', # in the paper, they claimed scalenorm led to faster training at no performance hit. the other option is 'layernorm' (also default) shift_tokens = True # discovered by an independent researcher in Shenzhen @BlinkDL, this simply shifts half of the feature space forward one step along the sequence dimension - greatly improved convergence even more in my local experiments ) x = torch.randint(0, 20000, (1, 1024)) logits = model(x) # (1, 1024, 20000)

Test on Autoregressive Enwik8

$ python train.py

Citations

@article{Hua2022TransformerQI, title = {Transformer Quality in Linear Time}, author = {Weizhe Hua and Zihang Dai and Hanxiao Liu and Quoc V. Le}, journal = {ArXiv}, year = {2022}, volume = {abs/2202.10447} }
@software{peng_bo_2021_5196578, author = {PENG Bo}, title = {BlinkDL/RWKV-LM: 0.01}, month = {aug}, year = {2021}, publisher = {Zenodo}, version = {0.01}, doi = {10.5281/zenodo.5196578}, url = {https://doi.org/10.5281/zenodo.5196578} }
@inproceedings{Ma2022MegaMA, title = {Mega: Moving Average Equipped Gated Attention}, author = {Xuezhe Ma and Chunting Zhou and Xiang Kong and Junxian He and Liangke Gui and Graham Neubig and Jonathan May and Luke Zettlemoyer}, year = {2022} }

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多