Drain3

Drain3

高效实时的日志模板挖掘系统

Drain3是一款实时日志模板挖掘系统,采用固定深度解析树指导日志组搜索,可从日志流中快速提取模板和聚类。系统支持在线学习,能持续从原始日志中提取模板。具备持久化、流处理、掩码和内存效率等特性,适用于大规模日志分析。Drain3避免了构建过深和不平衡的树结构,提高了日志模板挖掘的效率和准确性。

Drain3日志模板挖掘模板提取在线学习持久化Github开源项目

Drain3

Important Update

Drain3 was moved to the logpai GitHub organization (which is also the home for the original Drain implementation). We always welcome more contributors and maintainers to join us and push the project forward. We welcome more contributions and variants of implementations if you find practical enhancements to the algorithm in production scenarios.

Introduction

Drain3 is an online log template miner that can extract templates (clusters) from a stream of log messages in a timely manner. It employs a parse tree with fixed depth to guide the log group search process, which effectively avoids constructing a very deep and unbalanced tree.

Drain3 continuously learns on-the-fly and extracts log templates from raw log entries.

Example:

For the input:

connected to 10.0.0.1
connected to 192.168.0.1
Hex number 0xDEADBEAF
user davidoh logged in
user eranr logged in

Drain3 extracts the following templates:

ID=1     : size=2         : connected to <:IP:>
ID=2     : size=1         : Hex number <:HEX:>
ID=3     : size=2         : user <:*:> logged in

Full sample program output:

Starting Drain3 template miner
Checking for saved state
Saved state not found
Drain3 started with 'FILE' persistence
Starting training mode. Reading from std-in ('q' to finish)
> connected to 10.0.0.1
Saving state of 1 clusters with 1 messages, 528 bytes, reason: cluster_created (1)
{"change_type": "cluster_created", "cluster_id": 1, "cluster_size": 1, "template_mined": "connected to <:IP:>", "cluster_count": 1}
Parameters: [ExtractedParameter(value='10.0.0.1', mask_name='IP')]
> connected to 192.168.0.1
{"change_type": "none", "cluster_id": 1, "cluster_size": 2, "template_mined": "connected to <:IP:>", "cluster_count": 1}
Parameters: [ExtractedParameter(value='192.168.0.1', mask_name='IP')]
> Hex number 0xDEADBEAF
Saving state of 2 clusters with 3 messages, 584 bytes, reason: cluster_created (2)
{"change_type": "cluster_created", "cluster_id": 2, "cluster_size": 1, "template_mined": "Hex number <:HEX:>", "cluster_count": 2}
Parameters: [ExtractedParameter(value='0xDEADBEAF', mask_name='HEX')]
> user davidoh logged in
Saving state of 3 clusters with 4 messages, 648 bytes, reason: cluster_created (3)
{"change_type": "cluster_created", "cluster_id": 3, "cluster_size": 1, "template_mined": "user davidoh logged in", "cluster_count": 3}
Parameters: []
> user eranr logged in
Saving state of 3 clusters with 5 messages, 644 bytes, reason: cluster_template_changed (3)
{"change_type": "cluster_template_changed", "cluster_id": 3, "cluster_size": 2, "template_mined": "user <:*:> logged in", "cluster_count": 3}
Parameters: [ExtractedParameter(value='eranr', mask_name='*')]
> q
Training done. Mined clusters:
ID=1     : size=2         : connected to <:IP:>
ID=2     : size=1         : Hex number <:HEX:>
ID=3     : size=2         : user <:*:> logged in

This project is an upgrade of the original Drain project by LogPAI from Python 2.7 to Python 3.6 or later with additional features and bug-fixes.

Read more information about Drain from the following paper:

A Drain3 use case is presented in this blog post: Use open source Drain3 log-template mining project to monitor for network outages .

New features

  • Persistence. Save and load Drain state into an Apache Kafka topic, Redis or a file.
  • Streaming. Support feeding Drain with messages one-be-one.
  • Masking. Replace some message parts (e.g numbers, IPs, emails) with wildcards. This improves the accuracy of template mining.
  • Packaging. As a pip package.
  • Configuration. Support for configuring Drain3 using an .ini file or a configuration object.
  • Memory efficiency. Decrease the memory footprint of internal data structures and introduce cache to control max memory consumed (thanks to @StanislawSwierc)
  • Inference mode. In case you want to separate training and inference phase, Drain3 provides a function for fast matching against already-learned clusters (templates) only, without the usage of regular expressions.
  • Parameter extraction. Accurate extraction of the variable parts from a log message as an ordered list, based on its mined template and the defined masking instructions (thanks to @Impelon).

Expected Input and Output

Although Drain3 can be ingested with full raw log message, template mining accuracy can be improved if you feed it with only the unstructured free-text portion of log messages, by first removing structured parts like timestamp, hostname. severity, etc.

The output is a dictionary with the following fields:

  • change_type - indicates either if a new template was identified, an existing template was changed or message added to an existing cluster.
  • cluster_id - Sequential ID of the cluster that the log belongs to.
  • cluster_size- The size (message count) of the cluster that the log belongs to.
  • cluster_count - Count clusters seen so far.
  • template_mined- the last template of above cluster_id.

Configuration

Drain3 is configured using configparser. By default, config filename is drain3.ini in working directory. It can also be configured passing a TemplateMinerConfig object to the TemplateMiner constructor.

Primary configuration parameters:

  • [DRAIN]/sim_th - similarity threshold. if percentage of similar tokens for a log message is below this number, a new log cluster will be created (default 0.4)
  • [DRAIN]/depth - max depth levels of log clusters. Minimum is 3. (default 4)
  • [DRAIN]/max_children - max number of children of an internal node (default 100)
  • [DRAIN]/max_clusters - max number of tracked clusters (unlimited by default). When this number is reached, model starts replacing old clusters with a new ones according to the LRU cache eviction policy.
  • [DRAIN]/extra_delimiters - delimiters to apply when splitting log message into words (in addition to whitespace) ( default none). Format is a Python list e.g. ['_', ':'].
  • [MASKING]/masking - parameters masking - in json format (default "")
  • [MASKING]/mask_prefix & [MASKING]/mask_suffix - the wrapping of identified parameters in templates. By default, it is < and > respectively.
  • [SNAPSHOT]/snapshot_interval_minutes - time interval for new snapshots (default 1)
  • [SNAPSHOT]/compress_state - whether to compress the state before saving it. This can be useful when using Kafka persistence.

Masking

This feature allows masking of specific variable parts in log message with keywords, prior to passing to Drain. A well-defined masking can improve template mining accuracy.

Template parameters that do not match any custom mask in the preliminary masking phase are replaced with <*> by Drain core.

Use a list of regular expressions in the configuration file with the format {'regex_pattern', 'mask_with'} to set custom masking.

For example, following masking instructions in drain3.ini will mask IP addresses and integers:

[MASKING]
masking = [
          {"regex_pattern":"((?<=[^A-Za-z0-9])|^)(\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3})((?=[^A-Za-z0-9])|$)", "mask_with": "IP"},
          {"regex_pattern":"((?<=[^A-Za-z0-9])|^)([\\-\\+]?\\d+)((?=[^A-Za-z0-9])|$)", "mask_with": "NUM"},
          ]
    ]

Persistence

The persistence feature saves and loads a snapshot of Drain3 state in a (compressed) json format. This feature adds restart resiliency to Drain allowing continuation of activity and maintain learned knowledge across restarts.

Drain3 state includes the search tree and all the clusters that were identified up until snapshot time.

The snapshot also persist number of log messages matched each cluster, and it's cluster_id.

An example of a snapshot:

{ "clusters": [ { "cluster_id": 1, "log_template_tokens": [ "aa", "aa", "<*>" ], "py/object": "drain3_core.LogCluster", "size": 2 }, { "cluster_id": 2, "log_template_tokens": [ "My", "IP", "is", "<IP>" ], "py/object": "drain3_core.LogCluster", "size": 1 } ] }

This example snapshot persist two clusters with the templates:

["aa", "aa", "<*>"] - occurs twice

["My", "IP", "is", "<IP>"] - occurs once

Snapshots are created in the following events:

  • cluster_created - in any new template
  • cluster_template_changed - in any update of a template
  • periodic - after n minutes from the last snapshot. This is intended to save cluster sizes even if no new template was identified.

Drain3 currently supports the following persistence modes:

  • Kafka - The snapshot is saved in a dedicated topic used only for snapshots - the last message in this topic is the last snapshot that will be loaded after restart. For Kafka persistence, you need to provide: topic_name. You may also provide other kwargs that are supported by kafka.KafkaConsumer and kafka.Producer e.g bootstrap_servers to change Kafka endpoint (default is localhost:9092).

  • Redis - The snapshot is saved to a key in Redis database (contributed by @matabares).

  • File - The snapshot is saved to a file.

  • Memory - The snapshot is saved an in-memory object.

  • None - No persistence.

Drain3 persistence modes can be easily extended to another medium / database by inheriting the PersistenceHandler class.

Training vs. Inference modes

In some use-cases, it is required to separate training and inference phases.

In training phase you should call template_miner.add_log_message(log_line). This will match log line against an existing cluster (if similarity is above threshold) or create a new cluster. It may also change the template of an existing cluster.

In inference mode you should call template_miner.match(log_line). This will match log line against previously learned clusters only. No new clusters are created and templates of existing clusters are not changed. Match to existing cluster has to be perfect, otherwise None is returned. You can use persistence option to load previously trained clusters before inference.

Memory efficiency

This feature limits the max memory used by the model. It is particularly important for large and possibly unbounded log streams. This feature is controlled by the max_clusters​ parameter, which sets the max number of clusters/templates trarcked by the model. When the limit is reached, new templates start to replace the old ones according to the Least Recently Used (LRU) eviction policy. This makes the model adapt quickly to the most recent templates in the log stream.

Parameter Extraction

Drain3 supports retrieving an ordered list of variables in a log message, after its template was mined. Each parameter is accompanied by the name of the mask that was matched, or * for the catch-all mask.

Parameter extraction is performed by generating a regular expression that matches the template and then applying it on the log message. When exact_matching is enabled (by default), the generated regex included the regular expression defined in relevant masking instructions. If there are multiple masking instructions with the same name, either match can satisfy the regex. It is possible to disable exact matching so that every variable is matched against a non-whitespace character sequence. This may improve performance on expanse of accuracy.

Parameter extraction regexes generated per template are cached by default, to improve performance. You can control cache size with the MASKING/parameter_extraction_cache_capacity configuration parameter.

Sample usage:

result = template_miner.add_log_message(log_line) params = template_miner.extract_parameters( result["template_mined"], log_line, exact_matching=True)

For the input "user johndoe logged in 11 minuts ago", the template would be:

"user <:*:> logged in <:NUM:> minuts ago"

... and the extracted parameters:

[
  ExtractedParameter(value='johndoe', mask_name='*'), 
  ExtractedParameter(value='11', mask_name='NUM')
]

Installation

Drain3 is available from PyPI. To install use pip:

pip3 install drain3

Note: If you decide to use Kafka or Redis persistence, you should install relevant client library explicitly, since it is declared as an extra (optional) dependency, by either:

pip3 install kafka-python

-- or --

pip3 install redis

Examples

In order to run the examples directly from the repository, you need to install dependencies. You can do that using * pipenv* by executing the following command (assuming pipenv already installed):

python3 -m pipenv sync

Example 1 - drain_stdin_demo

Run examples/drain_stdin_demo.py from the root folder of the repository by:

python3 -m pipenv run python -m examples.drain_stdin_demo

This example uses Drain3 on input from stdin and persist to either Kafka / file / no persistence.

Change persistence_type variable in the example to change persistence mode.

Enter several log lines using the command line. Press q to end online learn-and-match mode.

Next, demo goes to match (inference) only mode, in which no new clusters are trained and input is matched against previously trained clusters only. Press q again to finish execution.

Example 2 - drain_bigfile_demo

Run examples/drain_bigfile_demo from the root folder of the repository by:

python3 -m pipenv run python -m examples.drain_bigfile_demo

This example downloads a real-world log file (of an SSH server) and process all lines, then prints result clusters, prefix tree and performance statistics.

Sample config file

An example drain3.ini file with masking instructions can be found in the examples folder as well.

Contributing

Our project welcomes external contributions. Please refer to CONTRIBUTING.md for further details.

Change Log

v0.9.11
  • Fixed possible DivideByZero error when the profiler is enabled - Issue #65.
v0.9.10
  • Fixed compatibility issue with Python 3.10 caused by removal of KeysView.
v0.9.9
  • Added support for accurate log message parameter extraction in a new function - extract_parameters(). The function get_parameter_list() is deprecated (Thanks to @Impelon).
  • Refactored AbstractMaskingInstruction as a base class for RegexMaskingInstruction, allowing to introduce other types of masking mechanisms.
v0.9.8
  • Added an option full_search_strategy option in TemplateMiner.match() and Drain.match(). See more info at Issue #48.
  • Added an option to disable parameterization of tokens that contains digits in configuration: TemplateMinerConfig.parametrize_numeric_tokens
  • Loading Drain snapshot now only restores clusters state and not configuration parameters. This improves backwards compatibility when introducing new Drain configuration parameters.
v0.9.7
  • Fixed bug in original Drain: log clusters were created multiple times for log messages with fewer tokens than max_node_depth.
  • Changed depth property name to a more descriptive name max_node_depth as Drain always subtracts 2 of depth argument value. Also added log_cluster_depth property to reflect original value of depth argument (Breaking Change).
  • Restricted depth param to minimum sensible value of 3.
  • Added log cluster count to nodes in Drain.print_tree()
  • Added optional log cluster details to Drain.print_tree()

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多